語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Topology and Geometric Group Theory ...
~
Leary, Ian J.
Topology and Geometric Group Theory = Ohio State University, Columbus, USA, 2010–2011 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Topology and Geometric Group Theory/ edited by Michael W. Davis, James Fowler, Jean-François Lafont, Ian J. Leary.
其他題名:
Ohio State University, Columbus, USA, 2010–2011 /
其他作者:
Davis, Michael W.
面頁冊數:
XI, 174 p. 10 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Manifolds (Mathematics). -
電子資源:
https://doi.org/10.1007/978-3-319-43674-6
ISBN:
9783319436746
Topology and Geometric Group Theory = Ohio State University, Columbus, USA, 2010–2011 /
Topology and Geometric Group Theory
Ohio State University, Columbus, USA, 2010–2011 /[electronic resource] :edited by Michael W. Davis, James Fowler, Jean-François Lafont, Ian J. Leary. - 1st ed. 2016. - XI, 174 p. 10 illus.online resource. - Springer Proceedings in Mathematics & Statistics,1842194-1009 ;. - Springer Proceedings in Mathematics & Statistics,125.
1.Arthur Bartels: On proofs of the Farrell-Jones Conjecture -- 2.Daniel Juan-Pineda and Luis Jorge Sanchez Saldana: The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups -- 3.Craig Guilbault: Ends, shapes, and boundaries in manifold topology and geometric group theory -- 4.Daniel Farley: A proof of Sageev’s Theorem on hyperplanes in CAT(0) cubical complexes -- 5.Pierre-Emmanuel Caprace and Bertrand Remy: Simplicity of twin tree lattices with non-trivial commutation relations -- 6.Peter Kropholler: Groups with many finitary cohomology functors.
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.
ISBN: 9783319436746
Standard No.: 10.1007/978-3-319-43674-6doiSubjects--Topical Terms:
1051266
Manifolds (Mathematics).
LC Class. No.: QA613-613.8
Dewey Class. No.: 514.34
Topology and Geometric Group Theory = Ohio State University, Columbus, USA, 2010–2011 /
LDR
:02867nam a22004335i 4500
001
972715
003
DE-He213
005
20200704140804.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319436746
$9
978-3-319-43674-6
024
7
$a
10.1007/978-3-319-43674-6
$2
doi
035
$a
978-3-319-43674-6
050
4
$a
QA613-613.8
050
4
$a
QA613.6-613.66
072
7
$a
PBMS
$2
bicssc
072
7
$a
MAT038000
$2
bisacsh
072
7
$a
PBMS
$2
thema
072
7
$a
PBPH
$2
thema
082
0 4
$a
514.34
$2
23
245
1 0
$a
Topology and Geometric Group Theory
$h
[electronic resource] :
$b
Ohio State University, Columbus, USA, 2010–2011 /
$c
edited by Michael W. Davis, James Fowler, Jean-François Lafont, Ian J. Leary.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XI, 174 p. 10 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
184
505
0
$a
1.Arthur Bartels: On proofs of the Farrell-Jones Conjecture -- 2.Daniel Juan-Pineda and Luis Jorge Sanchez Saldana: The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups -- 3.Craig Guilbault: Ends, shapes, and boundaries in manifold topology and geometric group theory -- 4.Daniel Farley: A proof of Sageev’s Theorem on hyperplanes in CAT(0) cubical complexes -- 5.Pierre-Emmanuel Caprace and Bertrand Remy: Simplicity of twin tree lattices with non-trivial commutation relations -- 6.Peter Kropholler: Groups with many finitary cohomology functors.
520
$a
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
0
$a
Complex manifolds.
$3
676705
650
0
$a
Group theory.
$3
527791
650
1 4
$a
Manifolds and Cell Complexes (incl. Diff.Topology).
$3
668590
650
2 4
$a
Group Theory and Generalizations.
$3
672112
700
1
$a
Davis, Michael W.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1113896
700
1
$a
Fowler, James.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1267813
700
1
$a
Lafont, Jean-François.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1267814
700
1
$a
Leary, Ian J.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1267815
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319436739
776
0 8
$i
Printed edition:
$z
9783319436753
776
0 8
$i
Printed edition:
$z
9783319828831
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-319-43674-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入