語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical Simulation in Applied Geop...
~
SpringerLink (Online service)
Numerical Simulation in Applied Geophysics
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Numerical Simulation in Applied Geophysics/ by Juan Enrique Santos, Patricia Mercedes Gauzellino.
作者:
Santos, Juan Enrique.
其他作者:
Gauzellino, Patricia Mercedes.
面頁冊數:
XV, 309 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematical models. -
電子資源:
https://doi.org/10.1007/978-3-319-48457-0
ISBN:
9783319484570
Numerical Simulation in Applied Geophysics
Santos, Juan Enrique.
Numerical Simulation in Applied Geophysics
[electronic resource] /by Juan Enrique Santos, Patricia Mercedes Gauzellino. - 1st ed. 2016. - XV, 309 p.online resource. - Lecture Notes in Geosystems Mathematics and Computing,2730-5996. - Lecture Notes in Geosystems Mathematics and Computing,.
1.Waves in porous media -- 2.Extensions of Biot Theory -- 3.Absorbing Boundary Conditions in Viscoelastic and -- 4.Induced Anisotropy, Viscoelastic and Poroelastic -- 5.Wave Propagation in Poroelastic Media. The Finite -- 6.The Mesoscale and the Macroscale. Isotropic Case -- 7.The Mesoscale and the Macroscale. VTI Case -- 8.Wave Propagation at the Macroscale -- .
This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques.
ISBN: 9783319484570
Standard No.: 10.1007/978-3-319-48457-0doiSubjects--Topical Terms:
527886
Mathematical models.
LC Class. No.: TA342-343
Dewey Class. No.: 003.3
Numerical Simulation in Applied Geophysics
LDR
:03771nam a22004095i 4500
001
972788
003
DE-He213
005
20200817135935.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319484570
$9
978-3-319-48457-0
024
7
$a
10.1007/978-3-319-48457-0
$2
doi
035
$a
978-3-319-48457-0
050
4
$a
TA342-343
072
7
$a
PBWH
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBWH
$2
thema
072
7
$a
TBJ
$2
thema
082
0 4
$a
003.3
$2
23
100
1
$a
Santos, Juan Enrique.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1117517
245
1 0
$a
Numerical Simulation in Applied Geophysics
$h
[electronic resource] /
$c
by Juan Enrique Santos, Patricia Mercedes Gauzellino.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2016.
300
$a
XV, 309 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Geosystems Mathematics and Computing,
$x
2730-5996
505
0
$a
1.Waves in porous media -- 2.Extensions of Biot Theory -- 3.Absorbing Boundary Conditions in Viscoelastic and -- 4.Induced Anisotropy, Viscoelastic and Poroelastic -- 5.Wave Propagation in Poroelastic Media. The Finite -- 6.The Mesoscale and the Macroscale. Isotropic Case -- 7.The Mesoscale and the Macroscale. VTI Case -- 8.Wave Propagation at the Macroscale -- .
520
$a
This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques.
650
0
$a
Mathematical models.
$3
527886
650
0
$a
Geophysics.
$3
686174
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Mathematical physics.
$3
527831
650
1 4
$a
Mathematical Modeling and Industrial Mathematics.
$3
669172
650
2 4
$a
Geophysics/Geodesy.
$3
668510
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Geophysics and Environmental Physics.
$3
782420
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
786649
700
1
$a
Gauzellino, Patricia Mercedes.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1117518
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319484563
776
0 8
$i
Printed edition:
$z
9783319484587
830
0
$a
Lecture Notes in Geosystems Mathematics and Computing,
$x
2730-5996
$3
1262130
856
4 0
$u
https://doi.org/10.1007/978-3-319-48457-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入