語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Ergodic Theory and Dynamical Systems
~
Coudène, Yves.
Ergodic Theory and Dynamical Systems
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Ergodic Theory and Dynamical Systems/ by Yves Coudène.
作者:
Coudène, Yves.
面頁冊數:
XIII, 190 p. 49 illus., 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Dynamics. -
電子資源:
https://doi.org/10.1007/978-1-4471-7287-1
ISBN:
9781447172871
Ergodic Theory and Dynamical Systems
Coudène, Yves.
Ergodic Theory and Dynamical Systems
[electronic resource] /by Yves Coudène. - 1st ed. 2016. - XIII, 190 p. 49 illus., 1 illus. in color.online resource. - Universitext,0172-5939. - Universitext,.
Introduction -- Part I Ergodic Theory -- The Mean Ergodic Theorem -- The Pointwise Ergodic Theorem -- Mixing -- The Hopf Argument -- Part II Dynamical Systems -- Topological Dynamics -- Nonwandering -- Conjugation -- Linearization -- A Strange Attractor -- Part III Entropy Theory -- Entropy -- Entropy and Information Theory -- Computing Entropy -- Part IV Ergodic Decomposition -- Lebesgue Spaces and Isomorphisms -- Ergodic Decomposition -- Measurable Partitions and -Algebras -- Part V Appendices -- Weak Convergence -- Conditional Expectation -- Topology and Measures -- References.
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader.
ISBN: 9781447172871
Standard No.: 10.1007/978-1-4471-7287-1doiSubjects--Topical Terms:
592238
Dynamics.
LC Class. No.: QA313
Dewey Class. No.: 515.39
Ergodic Theory and Dynamical Systems
LDR
:02989nam a22004095i 4500
001
973138
003
DE-He213
005
20200705084919.0
007
cr nn 008mamaa
008
201211s2016 xxk| s |||| 0|eng d
020
$a
9781447172871
$9
978-1-4471-7287-1
024
7
$a
10.1007/978-1-4471-7287-1
$2
doi
035
$a
978-1-4471-7287-1
050
4
$a
QA313
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBWR
$2
thema
082
0 4
$a
515.39
$2
23
082
0 4
$a
515.48
$2
23
100
1
$a
Coudène, Yves.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1268202
245
1 0
$a
Ergodic Theory and Dynamical Systems
$h
[electronic resource] /
$c
by Yves Coudène.
250
$a
1st ed. 2016.
264
1
$a
London :
$b
Springer London :
$b
Imprint: Springer,
$c
2016.
300
$a
XIII, 190 p. 49 illus., 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
Introduction -- Part I Ergodic Theory -- The Mean Ergodic Theorem -- The Pointwise Ergodic Theorem -- Mixing -- The Hopf Argument -- Part II Dynamical Systems -- Topological Dynamics -- Nonwandering -- Conjugation -- Linearization -- A Strange Attractor -- Part III Entropy Theory -- Entropy -- Entropy and Information Theory -- Computing Entropy -- Part IV Ergodic Decomposition -- Lebesgue Spaces and Isomorphisms -- Ergodic Decomposition -- Measurable Partitions and -Algebras -- Part V Appendices -- Weak Convergence -- Conditional Expectation -- Topology and Measures -- References.
520
$a
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader.
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
1 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781447172857
776
0 8
$i
Printed edition:
$z
9781447172864
830
0
$a
Universitext,
$x
0172-5939
$3
1253835
856
4 0
$u
https://doi.org/10.1007/978-1-4471-7287-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入