語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data Science Using Oracle Data Miner...
~
SpringerLink (Online service)
Data Science Using Oracle Data Miner and Oracle R Enterprise = Transform Your Business Systems into an Analytical Powerhouse /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data Science Using Oracle Data Miner and Oracle R Enterprise/ by Sibanjan Das.
其他題名:
Transform Your Business Systems into an Analytical Powerhouse /
作者:
Das, Sibanjan.
面頁冊數:
XXII, 289 p. 318 illus., 289 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Big data. -
電子資源:
https://doi.org/10.1007/978-1-4842-2614-8
ISBN:
9781484226148
Data Science Using Oracle Data Miner and Oracle R Enterprise = Transform Your Business Systems into an Analytical Powerhouse /
Das, Sibanjan.
Data Science Using Oracle Data Miner and Oracle R Enterprise
Transform Your Business Systems into an Analytical Powerhouse /[electronic resource] :by Sibanjan Das. - 1st ed. 2016. - XXII, 289 p. 318 illus., 289 illus. in color.online resource.
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
ISBN: 9781484226148
Standard No.: 10.1007/978-1-4842-2614-8doiSubjects--Topical Terms:
981821
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
Data Science Using Oracle Data Miner and Oracle R Enterprise = Transform Your Business Systems into an Analytical Powerhouse /
LDR
:02512nam a22003855i 4500
001
974045
003
DE-He213
005
20200630140204.0
007
cr nn 008mamaa
008
201211s2016 xxu| s |||| 0|eng d
020
$a
9781484226148
$9
978-1-4842-2614-8
024
7
$a
10.1007/978-1-4842-2614-8
$2
doi
035
$a
978-1-4842-2614-8
050
4
$a
QA76.9.B45
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.7
$2
23
100
1
$a
Das, Sibanjan.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1116657
245
1 0
$a
Data Science Using Oracle Data Miner and Oracle R Enterprise
$h
[electronic resource] :
$b
Transform Your Business Systems into an Analytical Powerhouse /
$c
by Sibanjan Das.
250
$a
1st ed. 2016.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2016.
300
$a
XXII, 289 p. 318 illus., 289 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
520
$a
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
650
0
$a
Big data.
$3
981821
650
0
$a
Database management.
$3
557799
650
0
$a
Programming languages (Electronic computers).
$3
1127615
650
1 4
$a
Big Data.
$3
1017136
650
2 4
$a
Database Management.
$3
669820
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484226131
776
0 8
$i
Printed edition:
$z
9781484226155
856
4 0
$u
https://doi.org/10.1007/978-1-4842-2614-8
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入