語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Fractal Geometry of the Brain
~
SpringerLink (Online service)
The Fractal Geometry of the Brain
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Fractal Geometry of the Brain/ edited by Antonio Di Ieva.
其他作者:
Di Ieva, Antonio.
面頁冊數:
XXII, 585 p. 175 illus., 86 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Neurosciences. -
電子資源:
https://doi.org/10.1007/978-1-4939-3995-4
ISBN:
9781493939954
The Fractal Geometry of the Brain
The Fractal Geometry of the Brain
[electronic resource] /edited by Antonio Di Ieva. - 1st ed. 2016. - XXII, 585 p. 175 illus., 86 illus. in color.online resource. - Springer Series in Computational Neuroscience,2197-1900. - Springer Series in Computational Neuroscience,14.
Part I. Introduction to Fractal Geometry and its Applications to Neurosciences -- The Fractal Geometry of the Brain: An Overview -- 2. Box-Counting Fractal Analysis: A Primer for the Clinician -- Tenets and Methods of Fractal Analysis (1/f noise) -- 4. Tenets, Methods and Applications of Multifractal Analysis in Neurosciences -- Part II. Fractals in Neuroanatomy and Basic Neurosciences -- Fractals in Neuroanatomy and Basic Neurosciences: An Overview -- Morphology and Fractal-Based Classifications of Neurons and Microglia -- The Morphology of the Brain Neurons: Box-counting Method in Quantitative Analysis of 2D Image -- Neuronal Fractal Dynamics -- Does a Self-Similarity Logic Shape the Organization of the Nervous System? -- Fractality of Cranial Sutures -- The Fractal Geometry of the Human Brain: An Evolutionary Perspective -- Part III. Fractals in Clinical Neurosciences -- Fractal Analysis in Clinical Neurosciences: An Overview -- Fractal Analysis in Neurological Diseases -- Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases -- Fractal Analysis in Neurodegenerative Diseases -- Fractal Analysis of the Cerebrovascular System Physiopathology -- Fractal and Chaos in the Hemodynamics of Intracranial Aneurysms -- Fractal-based Analysis of Arteriovenous Malformations (AVMs) -- Fractals in Neuroimaging -- Computational Fractal-Based Analysis of MR Susceptibility Weighted Imaging (SWI) in Neuro-oncology and neurotraumatology -- Texture Estimation for Abnormal Tissue Segmentation in Brain MRI -- Tumor Growth in the Brain: Complexity and Fractality -- Histological Fractal-based Classification of Brain Tumors -- Computational Fractal-based Analysis of the Brain Tumors Microvascular Networks -- Fractal analysis of electroencephalographic time-series (EEG-signals) -- On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification -- Fractals and Electromyograms -- Fractal analysis in Neuro-ophthalmology -- Fractals in Affective and Anxiety Disorders -- Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli -- Part IV. Computational Fractal-Based Neurosciences -- Computational Fractal-based Neurosciences: An Overview -- ImageJ in Computational Fractal-based Neuroscience: Pattern Extraction and Translational Research -- Fractal Analysis in MATLAB: A Tutorial for Neuroscientists -- Methodology to Increase the Computational Speed to Obtain the Fractal Dimension Using GPU Programming -- Fractal Electronics as a Generic Interface to Neurons -- Fractal Geometry meets Computational Intelligence: Future Perspectives.
Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology.
ISBN: 9781493939954
Standard No.: 10.1007/978-1-4939-3995-4doiSubjects--Topical Terms:
593561
Neurosciences.
LC Class. No.: RC321-580
Dewey Class. No.: 612.8
The Fractal Geometry of the Brain
LDR
:04736nam a22004095i 4500
001
974555
003
DE-He213
005
20200702114752.0
007
cr nn 008mamaa
008
201211s2016 xxu| s |||| 0|eng d
020
$a
9781493939954
$9
978-1-4939-3995-4
024
7
$a
10.1007/978-1-4939-3995-4
$2
doi
035
$a
978-1-4939-3995-4
050
4
$a
RC321-580
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
072
7
$a
PSAN
$2
thema
082
0 4
$a
612.8
$2
23
245
1 4
$a
The Fractal Geometry of the Brain
$h
[electronic resource] /
$c
edited by Antonio Di Ieva.
250
$a
1st ed. 2016.
264
1
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2016.
300
$a
XXII, 585 p. 175 illus., 86 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in Computational Neuroscience,
$x
2197-1900
505
0
$a
Part I. Introduction to Fractal Geometry and its Applications to Neurosciences -- The Fractal Geometry of the Brain: An Overview -- 2. Box-Counting Fractal Analysis: A Primer for the Clinician -- Tenets and Methods of Fractal Analysis (1/f noise) -- 4. Tenets, Methods and Applications of Multifractal Analysis in Neurosciences -- Part II. Fractals in Neuroanatomy and Basic Neurosciences -- Fractals in Neuroanatomy and Basic Neurosciences: An Overview -- Morphology and Fractal-Based Classifications of Neurons and Microglia -- The Morphology of the Brain Neurons: Box-counting Method in Quantitative Analysis of 2D Image -- Neuronal Fractal Dynamics -- Does a Self-Similarity Logic Shape the Organization of the Nervous System? -- Fractality of Cranial Sutures -- The Fractal Geometry of the Human Brain: An Evolutionary Perspective -- Part III. Fractals in Clinical Neurosciences -- Fractal Analysis in Clinical Neurosciences: An Overview -- Fractal Analysis in Neurological Diseases -- Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases -- Fractal Analysis in Neurodegenerative Diseases -- Fractal Analysis of the Cerebrovascular System Physiopathology -- Fractal and Chaos in the Hemodynamics of Intracranial Aneurysms -- Fractal-based Analysis of Arteriovenous Malformations (AVMs) -- Fractals in Neuroimaging -- Computational Fractal-Based Analysis of MR Susceptibility Weighted Imaging (SWI) in Neuro-oncology and neurotraumatology -- Texture Estimation for Abnormal Tissue Segmentation in Brain MRI -- Tumor Growth in the Brain: Complexity and Fractality -- Histological Fractal-based Classification of Brain Tumors -- Computational Fractal-based Analysis of the Brain Tumors Microvascular Networks -- Fractal analysis of electroencephalographic time-series (EEG-signals) -- On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification -- Fractals and Electromyograms -- Fractal analysis in Neuro-ophthalmology -- Fractals in Affective and Anxiety Disorders -- Fractal Fluency: An Intimate Relationship Between the Brain and Processing of Fractal Stimuli -- Part IV. Computational Fractal-Based Neurosciences -- Computational Fractal-based Neurosciences: An Overview -- ImageJ in Computational Fractal-based Neuroscience: Pattern Extraction and Translational Research -- Fractal Analysis in MATLAB: A Tutorial for Neuroscientists -- Methodology to Increase the Computational Speed to Obtain the Fractal Dimension Using GPU Programming -- Fractal Electronics as a Generic Interface to Neurons -- Fractal Geometry meets Computational Intelligence: Future Perspectives.
520
$a
Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology.
650
0
$a
Neurosciences.
$3
593561
650
0
$a
Neurology .
$3
1253459
650
2 4
$a
Neurology.
$3
593894
700
1
$a
Di Ieva, Antonio.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1112140
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781493939930
776
0 8
$i
Printed edition:
$z
9781493939947
776
0 8
$i
Printed edition:
$z
9781493981489
830
0
$a
Springer Series in Computational Neuroscience,
$x
2197-1900 ;
$v
14
$3
1255772
856
4 0
$u
https://doi.org/10.1007/978-1-4939-3995-4
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入