Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The Callias Index Formula Revisited
~
Gesztesy, Fritz.
The Callias Index Formula Revisited
Record Type:
Language materials, printed : Monograph/item
Title/Author:
The Callias Index Formula Revisited/ by Fritz Gesztesy, Marcus Waurick.
Author:
Gesztesy, Fritz.
other author:
Waurick, Marcus.
Description:
IX, 192 p. 1 illus.online resource. :
Contained By:
Springer Nature eBook
Subject:
Partial differential equations. -
Online resource:
https://doi.org/10.1007/978-3-319-29977-8
ISBN:
9783319299778
The Callias Index Formula Revisited
Gesztesy, Fritz.
The Callias Index Formula Revisited
[electronic resource] /by Fritz Gesztesy, Marcus Waurick. - 1st ed. 2016. - IX, 192 p. 1 illus.online resource. - Lecture Notes in Mathematics,21570075-8434 ;. - Lecture Notes in Mathematics,2144.
Introduction.-Notational Conventions -- Functional Analytic -- On Schatten–von Neumann Classes and Trace Class -- Pointwise Estimates for Integral Kernels -- Dirac-Type -- Derivation of the Trace Formula – The Trace Class Result -- Derivation of the Trace Formula – Diagonal Estimates -- The Case n = 3 -- The Index Theorem and Some Consequences -- Perturbation Theory for the Helmholtz Equation -- The Proof of Theorem 10.2: The Smooth Case -- The Proof of Theorem 10.2: The General Case -- A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index -- A: Construction of the Euclidean Dirac Algebra -- B: A Counterexample to [22, Lemma 5] -- References -- Index.
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970’s, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
ISBN: 9783319299778
Standard No.: 10.1007/978-3-319-29977-8doiSubjects--Topical Terms:
1102982
Partial differential equations.
LC Class. No.: QA370-380
Dewey Class. No.: 515.353
The Callias Index Formula Revisited
LDR
:02983nam a22004095i 4500
001
974919
003
DE-He213
005
20200701010953.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319299778
$9
978-3-319-29977-8
024
7
$a
10.1007/978-3-319-29977-8
$2
doi
035
$a
978-3-319-29977-8
050
4
$a
QA370-380
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.353
$2
23
100
1
$a
Gesztesy, Fritz.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
685064
245
1 4
$a
The Callias Index Formula Revisited
$h
[electronic resource] /
$c
by Fritz Gesztesy, Marcus Waurick.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
IX, 192 p. 1 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2157
505
0
$a
Introduction.-Notational Conventions -- Functional Analytic -- On Schatten–von Neumann Classes and Trace Class -- Pointwise Estimates for Integral Kernels -- Dirac-Type -- Derivation of the Trace Formula – The Trace Class Result -- Derivation of the Trace Formula – Diagonal Estimates -- The Case n = 3 -- The Index Theorem and Some Consequences -- Perturbation Theory for the Helmholtz Equation -- The Proof of Theorem 10.2: The Smooth Case -- The Proof of Theorem 10.2: The General Case -- A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index -- A: Construction of the Euclidean Dirac Algebra -- B: A Counterexample to [22, Lemma 5] -- References -- Index.
520
$a
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970’s, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Operator theory.
$3
527910
650
0
$a
Functional analysis.
$3
527706
650
1 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Operator Theory.
$3
672127
650
2 4
$a
Functional Analysis.
$3
672166
700
1
$a
Waurick, Marcus.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1110682
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319299761
776
0 8
$i
Printed edition:
$z
9783319299785
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-29977-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login