語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pancyclic and Bipancyclic Graphs
~
Wallis, W.D.
Pancyclic and Bipancyclic Graphs
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Pancyclic and Bipancyclic Graphs/ by John C. George, Abdollah Khodkar, W.D. Wallis.
作者:
George, John C.
其他作者:
Khodkar, Abdollah.
面頁冊數:
XII, 108 p. 64 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Graph theory. -
電子資源:
https://doi.org/10.1007/978-3-319-31951-3
ISBN:
9783319319513
Pancyclic and Bipancyclic Graphs
George, John C.
Pancyclic and Bipancyclic Graphs
[electronic resource] /by John C. George, Abdollah Khodkar, W.D. Wallis. - 1st ed. 2016. - XII, 108 p. 64 illus.online resource. - SpringerBriefs in Mathematics,2191-8198. - SpringerBriefs in Mathematics,.
1.Graphs -- 2. Degrees and Hamiltoneity -- 3. Pancyclicity -- 4. Minimal Pancyclicity -- 5. Uniquely Pancyclic Graphs -- 6. Bipancyclic Graphs -- 7. Uniquely Bipancyclic Graphs -- 8. Minimal Bipancyclicity -- References. .
This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length?
ISBN: 9783319319513
Standard No.: 10.1007/978-3-319-31951-3doiSubjects--Topical Terms:
527884
Graph theory.
LC Class. No.: QA166-166.247
Dewey Class. No.: 511.5
Pancyclic and Bipancyclic Graphs
LDR
:02736nam a22003975i 4500
001
975033
003
DE-He213
005
20200706030326.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319319513
$9
978-3-319-31951-3
024
7
$a
10.1007/978-3-319-31951-3
$2
doi
035
$a
978-3-319-31951-3
050
4
$a
QA166-166.247
072
7
$a
PBV
$2
bicssc
072
7
$a
MAT013000
$2
bisacsh
072
7
$a
PBV
$2
thema
082
0 4
$a
511.5
$2
23
100
1
$a
George, John C.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1109378
245
1 0
$a
Pancyclic and Bipancyclic Graphs
$h
[electronic resource] /
$c
by John C. George, Abdollah Khodkar, W.D. Wallis.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XII, 108 p. 64 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Mathematics,
$x
2191-8198
505
0
$a
1.Graphs -- 2. Degrees and Hamiltoneity -- 3. Pancyclicity -- 4. Minimal Pancyclicity -- 5. Uniquely Pancyclic Graphs -- 6. Bipancyclic Graphs -- 7. Uniquely Bipancyclic Graphs -- 8. Minimal Bipancyclicity -- References. .
520
$a
This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length?
650
0
$a
Graph theory.
$3
527884
650
0
$a
Combinatorics.
$3
669353
650
0
$a
Numerical analysis.
$3
527939
650
1 4
$a
Graph Theory.
$3
786670
650
2 4
$a
Numerical Analysis.
$3
671433
700
1
$a
Khodkar, Abdollah.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1109379
700
1
$a
Wallis, W.D.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
888365
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319319506
776
0 8
$i
Printed edition:
$z
9783319319520
830
0
$a
SpringerBriefs in Mathematics,
$x
2191-8198
$3
1255329
856
4 0
$u
https://doi.org/10.1007/978-3-319-31951-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入