語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pseudodifferential Equations Over No...
~
SpringerLink (Online service)
Pseudodifferential Equations Over Non-Archimedean Spaces
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Pseudodifferential Equations Over Non-Archimedean Spaces/ by W. A. Zúñiga-Galindo.
作者:
Zúñiga-Galindo, W. A.
面頁冊數:
XVI, 175 p. 1 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Harmonic analysis. -
電子資源:
https://doi.org/10.1007/978-3-319-46738-2
ISBN:
9783319467382
Pseudodifferential Equations Over Non-Archimedean Spaces
Zúñiga-Galindo, W. A.
Pseudodifferential Equations Over Non-Archimedean Spaces
[electronic resource] /by W. A. Zúñiga-Galindo. - 1st ed. 2016. - XVI, 175 p. 1 illus.online resource. - Lecture Notes in Mathematics,21740075-8434 ;. - Lecture Notes in Mathematics,2144.
p-Adic Analysis: Essential Ideas and Results -- Parabolic-type Equations and Markov Processes -- Non-Archimedean Parabolic-type Equations With Variable Coefficients -- Parabolic-Type Equations on Adeles -- Fundamental Solutions and Schrödinger Equations -- Pseudodifferential Equations of Klein-Gordon Type.
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applications of p-adic wavelets.
ISBN: 9783319467382
Standard No.: 10.1007/978-3-319-46738-2doiSubjects--Topical Terms:
672073
Harmonic analysis.
LC Class. No.: QA403-403.3
Dewey Class. No.: 515.785
Pseudodifferential Equations Over Non-Archimedean Spaces
LDR
:02756nam a22004095i 4500
001
976448
003
DE-He213
005
20200629202201.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319467382
$9
978-3-319-46738-2
024
7
$a
10.1007/978-3-319-46738-2
$2
doi
035
$a
978-3-319-46738-2
050
4
$a
QA403-403.3
072
7
$a
PBKD
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKD
$2
thema
082
0 4
$a
515.785
$2
23
100
1
$a
Zúñiga-Galindo, W. A.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1270480
245
1 0
$a
Pseudodifferential Equations Over Non-Archimedean Spaces
$h
[electronic resource] /
$c
by W. A. Zúñiga-Galindo.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XVI, 175 p. 1 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2174
505
0
$a
p-Adic Analysis: Essential Ideas and Results -- Parabolic-type Equations and Markov Processes -- Non-Archimedean Parabolic-type Equations With Variable Coefficients -- Parabolic-Type Equations on Adeles -- Fundamental Solutions and Schrödinger Equations -- Pseudodifferential Equations of Klein-Gordon Type.
520
$a
Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applications of p-adic wavelets.
650
0
$a
Harmonic analysis.
$3
672073
650
0
$a
Functional analysis.
$3
527706
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Number theory.
$3
527883
650
0
$a
Probabilities.
$3
527847
650
1 4
$a
Abstract Harmonic Analysis.
$3
672075
650
2 4
$a
Functional Analysis.
$3
672166
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
786649
650
2 4
$a
Number Theory.
$3
672023
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Mathematical Physics.
$3
786661
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319467375
776
0 8
$i
Printed edition:
$z
9783319467399
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-46738-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入