語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent Numerical Methods II: Ap...
~
SpringerLink (Online service)
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus/ by George A. Anastassiou, Ioannis K. Argyros.
作者:
Anastassiou, George A.
其他作者:
Argyros, Ioannis K.
面頁冊數:
XII, 116 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-33606-0
ISBN:
9783319336060
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
Anastassiou, George A.
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
[electronic resource] /by George A. Anastassiou, Ioannis K. Argyros. - 1st ed. 2016. - XII, 116 p.online resource. - Studies in Computational Intelligence,6491860-949X ;. - Studies in Computational Intelligence,564.
Fixed Point Results and Applications in Left Multivariate Fractional Calculus -- Fixed Point Results and Applications in Right Multivariate Fractional Calculus -- Semi-local Iterative Procedures and Applications In K-Multivariate Fractional Calculus -- Newton-like Procedures and Applications in Multivariate Fractional Calculus -- Implicit Iterative Algorithms and Applications in Multivariate Calculus -- Monotone Iterative Schemes and Applications in Fractional Calculus -- Extending the Convergence Domain of Newton’s Method -- The Left Multidimensional Riemann-Liouville Fractional Integral -- The Right Multidimensional Riemann-Liouville Fractional Integral.
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
ISBN: 9783319336060
Standard No.: 10.1007/978-3-319-33606-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
LDR
:02866nam a22004095i 4500
001
976453
003
DE-He213
005
20200701140724.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319336060
$9
978-3-319-33606-0
024
7
$a
10.1007/978-3-319-33606-0
$2
doi
035
$a
978-3-319-33606-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Anastassiou, George A.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
785335
245
1 0
$a
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus
$h
[electronic resource] /
$c
by George A. Anastassiou, Ioannis K. Argyros.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XII, 116 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
649
505
0
$a
Fixed Point Results and Applications in Left Multivariate Fractional Calculus -- Fixed Point Results and Applications in Right Multivariate Fractional Calculus -- Semi-local Iterative Procedures and Applications In K-Multivariate Fractional Calculus -- Newton-like Procedures and Applications in Multivariate Fractional Calculus -- Implicit Iterative Algorithms and Applications in Multivariate Calculus -- Monotone Iterative Schemes and Applications in Fractional Calculus -- Extending the Convergence Domain of Newton’s Method -- The Left Multidimensional Riemann-Liouville Fractional Integral -- The Right Multidimensional Riemann-Liouville Fractional Integral.
520
$a
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Computational complexity.
$3
527777
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Computational Science and Engineering.
$3
670319
650
2 4
$a
Complexity.
$3
669595
700
1
$a
Argyros, Ioannis K.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
681213
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319336053
776
0 8
$i
Printed edition:
$z
9783319336077
776
0 8
$i
Printed edition:
$z
9783319815589
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-319-33606-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入