語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning for Evolution Strat...
~
Kramer, Oliver.
Machine Learning for Evolution Strategies
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine Learning for Evolution Strategies/ by Oliver Kramer.
作者:
Kramer, Oliver.
面頁冊數:
IX, 124 p. 38 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-33383-0
ISBN:
9783319333830
Machine Learning for Evolution Strategies
Kramer, Oliver.
Machine Learning for Evolution Strategies
[electronic resource] /by Oliver Kramer. - 1st ed. 2016. - IX, 124 p. 38 illus. in color.online resource. - Studies in Big Data,202197-6503 ;. - Studies in Big Data,8.
Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
ISBN: 9783319333830
Standard No.: 10.1007/978-3-319-33383-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Machine Learning for Evolution Strategies
LDR
:02309nam a22004095i 4500
001
976635
003
DE-He213
005
20200703015708.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319333830
$9
978-3-319-33383-0
024
7
$a
10.1007/978-3-319-33383-0
$2
doi
035
$a
978-3-319-33383-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Kramer, Oliver.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
683259
245
1 0
$a
Machine Learning for Evolution Strategies
$h
[electronic resource] /
$c
by Oliver Kramer.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
IX, 124 p. 38 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Big Data,
$x
2197-6503 ;
$v
20
505
0
$a
Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
520
$a
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Computer simulation.
$3
560190
650
0
$a
Data mining.
$3
528622
650
0
$a
Sociophysics.
$3
890761
650
0
$a
Econophysics.
$3
796705
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Data-driven Science, Modeling and Theory Building.
$3
1112983
650
2 4
$a
Artificial Intelligence.
$3
646849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319333816
776
0 8
$i
Printed edition:
$z
9783319333823
776
0 8
$i
Printed edition:
$z
9783319815008
830
0
$a
Studies in Big Data,
$x
2197-6503 ;
$v
8
$3
1256918
856
4 0
$u
https://doi.org/10.1007/978-3-319-33383-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入