語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Maximum Principles and Geometric App...
~
Mastrolia, Paolo.
Maximum Principles and Geometric Applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Maximum Principles and Geometric Applications/ by Luis J. Alías, Paolo Mastrolia, Marco Rigoli.
作者:
Alías, Luis J.
其他作者:
Mastrolia, Paolo.
面頁冊數:
XXVII, 570 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Global analysis (Mathematics). -
電子資源:
https://doi.org/10.1007/978-3-319-24337-5
ISBN:
9783319243375
Maximum Principles and Geometric Applications
Alías, Luis J.
Maximum Principles and Geometric Applications
[electronic resource] /by Luis J. Alías, Paolo Mastrolia, Marco Rigoli. - 1st ed. 2016. - XXVII, 570 p.online resource. - Springer Monographs in Mathematics,1439-7382. - Springer Monographs in Mathematics,.
A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
ISBN: 9783319243375
Standard No.: 10.1007/978-3-319-24337-5doiSubjects--Topical Terms:
1255807
Global analysis (Mathematics).
LC Class. No.: QA614-614.97
Dewey Class. No.: 514.74
Maximum Principles and Geometric Applications
LDR
:03094nam a22004095i 4500
001
977202
003
DE-He213
005
20200707031421.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319243375
$9
978-3-319-24337-5
024
7
$a
10.1007/978-3-319-24337-5
$2
doi
035
$a
978-3-319-24337-5
050
4
$a
QA614-614.97
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
514.74
$2
23
100
1
$a
Alías, Luis J.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1270984
245
1 0
$a
Maximum Principles and Geometric Applications
$h
[electronic resource] /
$c
by Luis J. Alías, Paolo Mastrolia, Marco Rigoli.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XXVII, 570 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Monographs in Mathematics,
$x
1439-7382
505
0
$a
A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.
520
$a
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
650
0
$a
Global analysis (Mathematics).
$3
1255807
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Geometry.
$3
579899
650
1 4
$a
Global Analysis and Analysis on Manifolds.
$3
672519
650
2 4
$a
Partial Differential Equations.
$3
671119
700
1
$a
Mastrolia, Paolo.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
884199
700
1
$a
Rigoli, Marco.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
680715
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319243351
776
0 8
$i
Printed edition:
$z
9783319243368
776
0 8
$i
Printed edition:
$z
9783319796055
830
0
$a
Springer Monographs in Mathematics,
$x
1439-7382
$3
1254272
856
4 0
$u
https://doi.org/10.1007/978-3-319-24337-5
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入