語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Concise Introduction to Decentrali...
~
Oliehoek, Frans A.
A Concise Introduction to Decentralized POMDPs
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A Concise Introduction to Decentralized POMDPs/ by Frans A. Oliehoek, Christopher Amato.
作者:
Oliehoek, Frans A.
其他作者:
Amato, Christopher.
面頁冊數:
XX, 134 p. 36 illus., 22 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-28929-8
ISBN:
9783319289298
A Concise Introduction to Decentralized POMDPs
Oliehoek, Frans A.
A Concise Introduction to Decentralized POMDPs
[electronic resource] /by Frans A. Oliehoek, Christopher Amato. - 1st ed. 2016. - XX, 134 p. 36 illus., 22 illus. in color.online resource. - SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,2196-548X. - SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,.
Multiagent Systems Under Uncertainty -- The Decentralized POMDP Framework -- Finite-Horizon Dec-POMDPs -- Exact Finite-Horizon Planning Methods -- Approximate and Heuristic Finite-Horizon Planning Methods -- Infinite-Horizon Dec-POMDPs -- Infinite-Horizon Planning Methods: Discounted Cumulative Reward -- Infinite-Horizon Planning Methods: Average Reward -- Further Topics.
This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research. .
ISBN: 9783319289298
Standard No.: 10.1007/978-3-319-28929-8doiSubjects--Topical Terms:
559380
Artificial intelligence.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
A Concise Introduction to Decentralized POMDPs
LDR
:02264nam a22003975i 4500
001
977802
003
DE-He213
005
20200701143812.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319289298
$9
978-3-319-28929-8
024
7
$a
10.1007/978-3-319-28929-8
$2
doi
035
$a
978-3-319-28929-8
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Oliehoek, Frans A.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1109994
245
1 2
$a
A Concise Introduction to Decentralized POMDPs
$h
[electronic resource] /
$c
by Frans A. Oliehoek, Christopher Amato.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XX, 134 p. 36 illus., 22 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
$x
2196-548X
505
0
$a
Multiagent Systems Under Uncertainty -- The Decentralized POMDP Framework -- Finite-Horizon Dec-POMDPs -- Exact Finite-Horizon Planning Methods -- Approximate and Heuristic Finite-Horizon Planning Methods -- Infinite-Horizon Dec-POMDPs -- Infinite-Horizon Planning Methods: Discounted Cumulative Reward -- Infinite-Horizon Planning Methods: Average Reward -- Further Topics.
520
$a
This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research. .
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Control engineering.
$3
1249728
650
0
$a
Robotics.
$3
561941
650
0
$a
Mechatronics.
$3
559133
650
0
$a
Mathematical optimization.
$3
527675
650
1 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Control, Robotics, Mechatronics.
$3
768396
650
2 4
$a
Optimization.
$3
669174
700
1
$a
Amato, Christopher.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1109995
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319289274
776
0 8
$i
Printed edition:
$z
9783319289281
830
0
$a
SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
$x
2196-548X
$3
1260817
856
4 0
$u
https://doi.org/10.1007/978-3-319-28929-8
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入