語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Néron Models and Base Change
~
Nicaise, Johannes.
Néron Models and Base Change
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Néron Models and Base Change/ by Lars Halvard Halle, Johannes Nicaise.
作者:
Halle, Lars Halvard.
其他作者:
Nicaise, Johannes.
面頁冊數:
X, 151 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Algebraic geometry. -
電子資源:
https://doi.org/10.1007/978-3-319-26638-1
ISBN:
9783319266381
Néron Models and Base Change
Halle, Lars Halvard.
Néron Models and Base Change
[electronic resource] /by Lars Halvard Halle, Johannes Nicaise. - 1st ed. 2016. - X, 151 p.online resource. - Lecture Notes in Mathematics,21560075-8434 ;. - Lecture Notes in Mathematics,2144.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Introduction -- Preliminaries -- Models of curves and the Neron component series of a Jacobian -- Component groups and non-archimedean uniformization -- The base change conductor and Edixhoven's ltration -- The base change conductor and the Artin conductor -- Motivic zeta functions of semi-abelian varieties -- Cohomological interpretation of the motivic zeta function. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}.
Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.
ISBN: 9783319266381
Standard No.: 10.1007/978-3-319-26638-1doiSubjects--Topical Terms:
1255324
Algebraic geometry.
LC Class. No.: QA564-609
Dewey Class. No.: 516.35
Néron Models and Base Change
LDR
:03672nam a22004095i 4500
001
977938
003
DE-He213
005
20200629171318.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319266381
$9
978-3-319-26638-1
024
7
$a
10.1007/978-3-319-26638-1
$2
doi
035
$a
978-3-319-26638-1
050
4
$a
QA564-609
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
100
1
$a
Halle, Lars Halvard.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1107097
245
1 0
$a
Néron Models and Base Change
$h
[electronic resource] /
$c
by Lars Halvard Halle, Johannes Nicaise.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
X, 151 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2156
505
0
$a
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Introduction -- Preliminaries -- Models of curves and the Neron component series of a Jacobian -- Component groups and non-archimedean uniformization -- The base change conductor and Edixhoven's ltration -- The base change conductor and the Artin conductor -- Motivic zeta functions of semi-abelian varieties -- Cohomological interpretation of the motivic zeta function. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}.
520
$a
Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.
650
0
$a
Algebraic geometry.
$3
1255324
650
0
$a
Number theory.
$3
527883
650
1 4
$a
Algebraic Geometry.
$3
670184
650
2 4
$a
Number Theory.
$3
672023
700
1
$a
Nicaise, Johannes.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1064462
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319266374
776
0 8
$i
Printed edition:
$z
9783319266398
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-26638-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入