語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multibody Dynamics = Computational M...
~
Font-Llagunes, Josep M.
Multibody Dynamics = Computational Methods and Applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multibody Dynamics/ edited by Josep M. Font-Llagunes.
其他題名:
Computational Methods and Applications /
其他作者:
Font-Llagunes, Josep M.
面頁冊數:
VIII, 321 p. 162 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Vibration. -
電子資源:
https://doi.org/10.1007/978-3-319-30614-8
ISBN:
9783319306148
Multibody Dynamics = Computational Methods and Applications /
Multibody Dynamics
Computational Methods and Applications /[electronic resource] :edited by Josep M. Font-Llagunes. - 1st ed. 2016. - VIII, 321 p. 162 illus.online resource. - Computational Methods in Applied Sciences,421871-3033 ;. - Computational Methods in Applied Sciences,36.
Preface, by Josep M. Font-Llagunes -- Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints, by Peter Betsch, Robert Altmann, Yinping Yang -- Enhancing the Performance of the DCA When Forming and Solving the Equations of Motion for Multibody Systems, by Jeremy J. Laflin, Kurt S. Anderson, Mike Hans -- Three-Dimensional Non-linear Shell Theory for Flexible Multibody Dynamics, by Shilei Han and Olivier A. Bauchau -- On the Frictional Contacts in Multibody System Dynamics, by Filipe Marques, Paulo Flores, Hamid M. Lankarani -- Modeling and simulation of a 3D printer based on a SCARA mechanism, by Eduardo Paiva Okabe and Pierangelo Masarati -- Structure Preserving Optimal Control of a Three-Dimensional Upright Gait, by Michael W. Koch and Sigrid Leyendecker -- Robotran-YARP interface: a framework for real-time controller developments based on multibody dynamics simulations, by Timothée Habra, Houman Dallali, Alberto Cardellino, Lorenzo Natale, Nikolaos Tsagarakis, Paul Fisette and Renaud Ronsse -- Wheel-Ground modeling in planetary exploration: From unified simulation frameworks towards heterogeneous, multi-tier wheel ground contact simulation, by Roy Lichtenheldt, Stefan Barthelmes, Fabian Buse, Matthias Hellerer -- Intervention-Autonomous Underwater Vehicle multibody models for dynamic manipulation tasks, by R. Conti, R. Costanzi, F. Fanelli, E. Meli, A. Ridolfi and B. Allotta -- Development of a Musculotendon Model within the Framework of Multibody Systems Dynamics, by Ana R. Oliveira, Sérgio B. Gonçalves, Mamede de Carvalho, Miguel T. Silva -- Numerical and Experimental Study on Contact Force Fluctuation between Wheel and Rail Considering Rail Flexibility and Track Conditions, by Saki Ienaga, Yoshiaki Terumichi, Kazuhiko Nishimura, Minoru Nishina -- Use of Flexible Models in Extended Kalman Filtering Applied to Vehicle Body Force Estimation, by Sebastiaan van Aalst, Frank Naets, Johan Theunissen and Wim Desmet -- Design and Control of an Energy-Saving Robot Using Storage Elements and Reaction Wheels, by Makoto Iwamura, Shunichi Imafuku, Takahiro Kawamoto and Werner Schiehlen -- Exploiting the equations of motion for biped robot control with enhanced stability, by Johannes Mayr, Alexander Reiter, Hubert Gattringer, Andreas Müller. .
This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems,and nanotechnologies.
ISBN: 9783319306148
Standard No.: 10.1007/978-3-319-30614-8doiSubjects--Topical Terms:
595749
Vibration.
LC Class. No.: TA355
Dewey Class. No.: 620
Multibody Dynamics = Computational Methods and Applications /
LDR
:04570nam a22004215i 4500
001
978059
003
DE-He213
005
20200702052249.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319306148
$9
978-3-319-30614-8
024
7
$a
10.1007/978-3-319-30614-8
$2
doi
035
$a
978-3-319-30614-8
050
4
$a
TA355
050
4
$a
TA352-356
072
7
$a
TGMD4
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TGMD
$2
thema
082
0 4
$a
620
$2
23
245
1 0
$a
Multibody Dynamics
$h
[electronic resource] :
$b
Computational Methods and Applications /
$c
edited by Josep M. Font-Llagunes.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
VIII, 321 p. 162 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Computational Methods in Applied Sciences,
$x
1871-3033 ;
$v
42
505
0
$a
Preface, by Josep M. Font-Llagunes -- Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints, by Peter Betsch, Robert Altmann, Yinping Yang -- Enhancing the Performance of the DCA When Forming and Solving the Equations of Motion for Multibody Systems, by Jeremy J. Laflin, Kurt S. Anderson, Mike Hans -- Three-Dimensional Non-linear Shell Theory for Flexible Multibody Dynamics, by Shilei Han and Olivier A. Bauchau -- On the Frictional Contacts in Multibody System Dynamics, by Filipe Marques, Paulo Flores, Hamid M. Lankarani -- Modeling and simulation of a 3D printer based on a SCARA mechanism, by Eduardo Paiva Okabe and Pierangelo Masarati -- Structure Preserving Optimal Control of a Three-Dimensional Upright Gait, by Michael W. Koch and Sigrid Leyendecker -- Robotran-YARP interface: a framework for real-time controller developments based on multibody dynamics simulations, by Timothée Habra, Houman Dallali, Alberto Cardellino, Lorenzo Natale, Nikolaos Tsagarakis, Paul Fisette and Renaud Ronsse -- Wheel-Ground modeling in planetary exploration: From unified simulation frameworks towards heterogeneous, multi-tier wheel ground contact simulation, by Roy Lichtenheldt, Stefan Barthelmes, Fabian Buse, Matthias Hellerer -- Intervention-Autonomous Underwater Vehicle multibody models for dynamic manipulation tasks, by R. Conti, R. Costanzi, F. Fanelli, E. Meli, A. Ridolfi and B. Allotta -- Development of a Musculotendon Model within the Framework of Multibody Systems Dynamics, by Ana R. Oliveira, Sérgio B. Gonçalves, Mamede de Carvalho, Miguel T. Silva -- Numerical and Experimental Study on Contact Force Fluctuation between Wheel and Rail Considering Rail Flexibility and Track Conditions, by Saki Ienaga, Yoshiaki Terumichi, Kazuhiko Nishimura, Minoru Nishina -- Use of Flexible Models in Extended Kalman Filtering Applied to Vehicle Body Force Estimation, by Sebastiaan van Aalst, Frank Naets, Johan Theunissen and Wim Desmet -- Design and Control of an Energy-Saving Robot Using Storage Elements and Reaction Wheels, by Makoto Iwamura, Shunichi Imafuku, Takahiro Kawamoto and Werner Schiehlen -- Exploiting the equations of motion for biped robot control with enhanced stability, by Johannes Mayr, Alexander Reiter, Hubert Gattringer, Andreas Müller. .
520
$a
This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems,and nanotechnologies.
650
0
$a
Vibration.
$3
595749
650
0
$a
Dynamical systems.
$3
1249739
650
0
$a
Dynamics.
$3
592238
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Mechanical engineering.
$3
557493
650
1 4
$a
Vibration, Dynamical Systems, Control.
$3
670825
650
2 4
$a
Computational Science and Engineering.
$3
670319
650
2 4
$a
Mechanical Engineering.
$3
670827
700
1
$a
Font-Llagunes, Josep M.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1107871
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319306124
776
0 8
$i
Printed edition:
$z
9783319306131
776
0 8
$i
Printed edition:
$z
9783319808505
830
0
$a
Computational Methods in Applied Sciences,
$x
1871-3033 ;
$v
36
$3
1254850
856
4 0
$u
https://doi.org/10.1007/978-3-319-30614-8
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入