語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Inverse Problems in Ordinary Differe...
~
SpringerLink (Online service)
Inverse Problems in Ordinary Differential Equations and Applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Inverse Problems in Ordinary Differential Equations and Applications/ by Jaume Llibre, Rafael Ramírez.
作者:
Llibre, Jaume.
其他作者:
Ramírez, Rafael.
面頁冊數:
XII, 266 p. 9 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Differential equations. -
電子資源:
https://doi.org/10.1007/978-3-319-26339-7
ISBN:
9783319263397
Inverse Problems in Ordinary Differential Equations and Applications
Llibre, Jaume.
Inverse Problems in Ordinary Differential Equations and Applications
[electronic resource] /by Jaume Llibre, Rafael Ramírez. - 1st ed. 2016. - XII, 266 p. 9 illus., 8 illus. in color.online resource. - Progress in Mathematics,3130743-1643 ;. - Progress in Mathematics,312.
Preface -- 1.Differential Equations with Given Partial and First Integrals -- 2.Polynomial Vector Fields with Given Partial and First Integrals -- 3.16th Hilbert Problem for Algebraic Limit Cycles -- 4.Inverse Problem for Constrained Lagrangian Systems -- 5.Inverse Problem for Constrained Hamiltonian Systems -- 6.Integrability of the Constrained Rigid Body -- 7.Inverse Problem in the Vakonomic Mechanics -- Index -- Bibliography.
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
ISBN: 9783319263397
Standard No.: 10.1007/978-3-319-26339-7doiSubjects--Topical Terms:
527664
Differential equations.
LC Class. No.: QA372
Dewey Class. No.: 515.352
Inverse Problems in Ordinary Differential Equations and Applications
LDR
:02852nam a22004095i 4500
001
978481
003
DE-He213
005
20200702151500.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319263397
$9
978-3-319-26339-7
024
7
$a
10.1007/978-3-319-26339-7
$2
doi
035
$a
978-3-319-26339-7
050
4
$a
QA372
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.352
$2
23
100
1
$a
Llibre, Jaume.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1021384
245
1 0
$a
Inverse Problems in Ordinary Differential Equations and Applications
$h
[electronic resource] /
$c
by Jaume Llibre, Rafael Ramírez.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2016.
300
$a
XII, 266 p. 9 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Progress in Mathematics,
$x
0743-1643 ;
$v
313
505
0
$a
Preface -- 1.Differential Equations with Given Partial and First Integrals -- 2.Polynomial Vector Fields with Given Partial and First Integrals -- 3.16th Hilbert Problem for Algebraic Limit Cycles -- 4.Inverse Problem for Constrained Lagrangian Systems -- 5.Inverse Problem for Constrained Hamiltonian Systems -- 6.Integrability of the Constrained Rigid Body -- 7.Inverse Problem in the Vakonomic Mechanics -- Index -- Bibliography.
520
$a
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
650
0
$a
Differential equations.
$3
527664
650
1 4
$a
Ordinary Differential Equations.
$3
670854
700
1
$a
Ramírez, Rafael.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1271918
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319263373
776
0 8
$i
Printed edition:
$z
9783319263380
776
0 8
$i
Printed edition:
$z
9783319799353
830
0
$a
Progress in Mathematics,
$x
0743-1643 ;
$v
312
$3
1258196
856
4 0
$u
https://doi.org/10.1007/978-3-319-26339-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入