語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Scalable Algorithms for Contact Problems
~
Kozubek, Tomáš.
Scalable Algorithms for Contact Problems
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Scalable Algorithms for Contact Problems/ by Zdeněk Dostál, Tomáš Kozubek, Marie Sadowská, Vít Vondrák.
作者:
Dostál, Zdeněk.
其他作者:
Kozubek, Tomáš.
面頁冊數:
XIX, 340 p. 80 illus., 23 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer mathematics. -
電子資源:
https://doi.org/10.1007/978-1-4939-6834-3
ISBN:
9781493968343
Scalable Algorithms for Contact Problems
Dostál, Zdeněk.
Scalable Algorithms for Contact Problems
[electronic resource] /by Zdeněk Dostál, Tomáš Kozubek, Marie Sadowská, Vít Vondrák. - 1st ed. 2016. - XIX, 340 p. 80 illus., 23 illus. in color.online resource. - Advances in Mechanics and Mathematics,361571-8689 ;. - Advances in Mechanics and Mathematics,33.
1. Contact Problems and their Solution -- Part I. Basic Concepts -- 2. Linear Algebra -- 3. Optimization -- 4. Analysis -- Part II. Optimal QP and QCQP Algorithms -- 5. Conjugate Gradients -- 6. Gradient Projection for Separable Convex Sets -- 7. MPGP for Separable QCQP -- 8. MPRGP for Bound Constrained QP -- 9. Solvers for Separable and Equality QP/QCQP Problems -- Part III. Scalable Algorithms for Contact Problems -- 10. TFETI for Scalar Problems -- 11. Frictionless Contact Problems -- 12. Contact Problems with Friction -- 13. Transient Contact Problems -- 14. TBETI -- 15. Mortars -- 16. Preconditioning and Scaling -- Part IV. Other Applications and Parallel Implementation -- 17. Contact with Plasticity -- 18. Contact Shape Optimization -- 19. Massively Parallel Implementation -- Index.
This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experiments. The final part includes extensions to contact shape optimization, plasticity, and HPC implementation. Graduate students and researchers in mechanical engineering, computational engineering, and applied mathematics, will find this book of great value and interest.
ISBN: 9781493968343
Standard No.: 10.1007/978-1-4939-6834-3doiSubjects--Topical Terms:
1199796
Computer mathematics.
LC Class. No.: QA71-90
Dewey Class. No.: 518
Scalable Algorithms for Contact Problems
LDR
:03550nam a22004095i 4500
001
978726
003
DE-He213
005
20200703034007.0
007
cr nn 008mamaa
008
201211s2016 xxu| s |||| 0|eng d
020
$a
9781493968343
$9
978-1-4939-6834-3
024
7
$a
10.1007/978-1-4939-6834-3
$2
doi
035
$a
978-1-4939-6834-3
050
4
$a
QA71-90
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Dostál, Zdeněk.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1272047
245
1 0
$a
Scalable Algorithms for Contact Problems
$h
[electronic resource] /
$c
by Zdeněk Dostál, Tomáš Kozubek, Marie Sadowská, Vít Vondrák.
250
$a
1st ed. 2016.
264
1
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2016.
300
$a
XIX, 340 p. 80 illus., 23 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Advances in Mechanics and Mathematics,
$x
1571-8689 ;
$v
36
505
0
$a
1. Contact Problems and their Solution -- Part I. Basic Concepts -- 2. Linear Algebra -- 3. Optimization -- 4. Analysis -- Part II. Optimal QP and QCQP Algorithms -- 5. Conjugate Gradients -- 6. Gradient Projection for Separable Convex Sets -- 7. MPGP for Separable QCQP -- 8. MPRGP for Bound Constrained QP -- 9. Solvers for Separable and Equality QP/QCQP Problems -- Part III. Scalable Algorithms for Contact Problems -- 10. TFETI for Scalar Problems -- 11. Frictionless Contact Problems -- 12. Contact Problems with Friction -- 13. Transient Contact Problems -- 14. TBETI -- 15. Mortars -- 16. Preconditioning and Scaling -- Part IV. Other Applications and Parallel Implementation -- 17. Contact with Plasticity -- 18. Contact Shape Optimization -- 19. Massively Parallel Implementation -- Index.
520
$a
This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experiments. The final part includes extensions to contact shape optimization, plasticity, and HPC implementation. Graduate students and researchers in mechanical engineering, computational engineering, and applied mathematics, will find this book of great value and interest.
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Applied mathematics.
$3
1069907
650
0
$a
Engineering mathematics.
$3
562757
650
0
$a
Computer science—Mathematics.
$3
1253519
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Mathematical and Computational Engineering.
$3
1139415
650
2 4
$a
Mathematics of Computing.
$3
669457
700
1
$a
Kozubek, Tomáš.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1267762
700
1
$a
Sadowská, Marie.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1272048
700
1
$a
Vondrák, Vít.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1272049
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781493968329
776
0 8
$i
Printed edition:
$z
9781493968336
776
0 8
$i
Printed edition:
$z
9781493983124
830
0
$a
Advances in Mechanics and Mathematics,
$x
1571-8689 ;
$v
33
$3
1261614
856
4 0
$u
https://doi.org/10.1007/978-1-4939-6834-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入