語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Fixed-Point Farrago
~
SpringerLink (Online service)
A Fixed-Point Farrago
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A Fixed-Point Farrago/ by Joel H. Shapiro.
作者:
Shapiro, Joel H.
面頁冊數:
XIV, 221 p. 8 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematical analysis. -
電子資源:
https://doi.org/10.1007/978-3-319-27978-7
ISBN:
9783319279787
A Fixed-Point Farrago
Shapiro, Joel H.
A Fixed-Point Farrago
[electronic resource] /by Joel H. Shapiro. - 1st ed. 2016. - XIV, 221 p. 8 illus.online resource. - Universitext,0172-5939. - Universitext,.
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov–Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov–Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll–Nardzewski surrounding fixed points for families of affine maps.
ISBN: 9783319279787
Standard No.: 10.1007/978-3-319-27978-7doiSubjects--Topical Terms:
527926
Mathematical analysis.
LC Class. No.: QA299.6-433
Dewey Class. No.: 515
A Fixed-Point Farrago
LDR
:03115nam a22004095i 4500
001
979140
003
DE-He213
005
20200702165500.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319279787
$9
978-3-319-27978-7
024
7
$a
10.1007/978-3-319-27978-7
$2
doi
035
$a
978-3-319-27978-7
050
4
$a
QA299.6-433
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
515
$2
23
100
1
$a
Shapiro, Joel H.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1109345
245
1 2
$a
A Fixed-Point Farrago
$h
[electronic resource] /
$c
by Joel H. Shapiro.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XIV, 221 p. 8 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov–Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov–Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
520
$a
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll–Nardzewski surrounding fixed points for families of affine maps.
650
0
$a
Mathematical analysis.
$3
527926
650
0
$a
Analysis (Mathematics).
$3
1253570
650
0
$a
Numerical analysis.
$3
527939
650
1 4
$a
Analysis.
$3
669490
650
2 4
$a
Numerical Analysis.
$3
671433
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319279763
776
0 8
$i
Printed edition:
$z
9783319279770
776
0 8
$i
Printed edition:
$z
9783319802510
830
0
$a
Universitext,
$x
0172-5939
$3
1253835
856
4 0
$u
https://doi.org/10.1007/978-3-319-27978-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入