語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sparse Grids and Applications - Stut...
~
SpringerLink (Online service)
Sparse Grids and Applications - Stuttgart 2014
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Sparse Grids and Applications - Stuttgart 2014/ edited by Jochen Garcke, Dirk Pflüger.
其他作者:
Garcke, Jochen.
面頁冊數:
VIII, 336 p. 85 illus., 24 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer mathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-28262-6
ISBN:
9783319282626
Sparse Grids and Applications - Stuttgart 2014
Sparse Grids and Applications - Stuttgart 2014
[electronic resource] /edited by Jochen Garcke, Dirk Pflüger. - 1st ed. 2016. - VIII, 336 p. 85 illus., 24 illus. in color.online resource. - Lecture Notes in Computational Science and Engineering,1091439-7358 ;. - Lecture Notes in Computational Science and Engineering,103.
Peng Chen and Christoph Schwab: Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and Inversion -- Fabian Franzelin and Dirk Pflüger: From Data to Uncertainty: An E_cient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty -- Helmut Harbrecht and Michael Peters: Combination Technique Based Second Moment Analysis for Elliptic PDEs on Random Domains -- Brendan Harding: Adaptive sparse grids and extrapolation techniques -- Philipp Hupp and Riko Jacob: A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm -- Valeriy Khakhutskyy and Markus Hegland: Spatially-Dimension- Adaptive Sparse Grids for Online Learning -- Katharina Kormann and Eric Sonnendrücker: Sparse Grids for the Vlasov–Poisson Equation -- Fabio Nobile, Lorenzo Tamellini, Francesco Tesei and Raul Tempone: An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient -- David Pfander, Alexander Heinecke, and Dirk Pflüger: A New Subspace-Based Algorithm for E_cient Spatially Adaptive Sparse Grid Regression, Classification and Multi- Evaluation -- Sharif Rahman, Xuchun Ren, and Vaibhav Yadav: High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition -- Jie Shen, Yingwei Wang, and Haijun Yu: E_cient Spectral-Element Methods for the Electronic Schrödinger Equation -- Hoang Tran, Clayton G. Webster, and Guannan Zhang: A Sparse Grid Method for Bayesian Uncertainty Quantification with Application to Large Eddy Simulation Turbulence Models -- Julian Valentin and Dirk Pflüger: Hierarchical Gradient-Based Optimization with BSplines on Sparse Grids.
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.
ISBN: 9783319282626
Standard No.: 10.1007/978-3-319-28262-6doiSubjects--Topical Terms:
1199796
Computer mathematics.
LC Class. No.: QA71-90
Dewey Class. No.: 004
Sparse Grids and Applications - Stuttgart 2014
LDR
:03935nam a22004095i 4500
001
979687
003
DE-He213
005
20200630113550.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319282626
$9
978-3-319-28262-6
024
7
$a
10.1007/978-3-319-28262-6
$2
doi
035
$a
978-3-319-28262-6
050
4
$a
QA71-90
072
7
$a
PDE
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
004
$2
23
245
1 0
$a
Sparse Grids and Applications - Stuttgart 2014
$h
[electronic resource] /
$c
edited by Jochen Garcke, Dirk Pflüger.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
VIII, 336 p. 85 illus., 24 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Computational Science and Engineering,
$x
1439-7358 ;
$v
109
505
0
$a
Peng Chen and Christoph Schwab: Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and Inversion -- Fabian Franzelin and Dirk Pflüger: From Data to Uncertainty: An E_cient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty -- Helmut Harbrecht and Michael Peters: Combination Technique Based Second Moment Analysis for Elliptic PDEs on Random Domains -- Brendan Harding: Adaptive sparse grids and extrapolation techniques -- Philipp Hupp and Riko Jacob: A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm -- Valeriy Khakhutskyy and Markus Hegland: Spatially-Dimension- Adaptive Sparse Grids for Online Learning -- Katharina Kormann and Eric Sonnendrücker: Sparse Grids for the Vlasov–Poisson Equation -- Fabio Nobile, Lorenzo Tamellini, Francesco Tesei and Raul Tempone: An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient -- David Pfander, Alexander Heinecke, and Dirk Pflüger: A New Subspace-Based Algorithm for E_cient Spatially Adaptive Sparse Grid Regression, Classification and Multi- Evaluation -- Sharif Rahman, Xuchun Ren, and Vaibhav Yadav: High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition -- Jie Shen, Yingwei Wang, and Haijun Yu: E_cient Spectral-Element Methods for the Electronic Schrödinger Equation -- Hoang Tran, Clayton G. Webster, and Guannan Zhang: A Sparse Grid Method for Bayesian Uncertainty Quantification with Application to Large Eddy Simulation Turbulence Models -- Julian Valentin and Dirk Pflüger: Hierarchical Gradient-Based Optimization with BSplines on Sparse Grids.
520
$a
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Algorithms.
$3
527865
650
1 4
$a
Computational Science and Engineering.
$3
670319
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
593923
700
1
$a
Garcke, Jochen.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1072529
700
1
$a
Pflüger, Dirk.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1272727
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319282602
776
0 8
$i
Printed edition:
$z
9783319282619
776
0 8
$i
Printed edition:
$z
9783319803098
830
0
$a
Lecture Notes in Computational Science and Engineering,
$x
1439-7358 ;
$v
103
$3
1253821
856
4 0
$u
https://doi.org/10.1007/978-3-319-28262-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入