語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances in Iterative Methods for No...
~
Amat, Sergio.
Advances in Iterative Methods for Nonlinear Equations
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Advances in Iterative Methods for Nonlinear Equations/ edited by Sergio Amat, Sonia Busquier.
其他作者:
Amat, Sergio.
面頁冊數:
V, 286 p. 117 illus., 113 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Numerical analysis. -
電子資源:
https://doi.org/10.1007/978-3-319-39228-8
ISBN:
9783319392288
Advances in Iterative Methods for Nonlinear Equations
Advances in Iterative Methods for Nonlinear Equations
[electronic resource] /edited by Sergio Amat, Sonia Busquier. - 1st ed. 2016. - V, 286 p. 117 illus., 113 illus. in color.online resource. - SEMA SIMAI Springer Series,102199-3041 ;. - SEMA SIMAI Springer Series,5.
1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton’s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis.
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. .
ISBN: 9783319392288
Standard No.: 10.1007/978-3-319-39228-8doiSubjects--Topical Terms:
527939
Numerical analysis.
LC Class. No.: QA297-299.4
Dewey Class. No.: 518
Advances in Iterative Methods for Nonlinear Equations
LDR
:03594nam a22004095i 4500
001
979735
003
DE-He213
005
20200630214741.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319392288
$9
978-3-319-39228-8
024
7
$a
10.1007/978-3-319-39228-8
$2
doi
035
$a
978-3-319-39228-8
050
4
$a
QA297-299.4
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
245
1 0
$a
Advances in Iterative Methods for Nonlinear Equations
$h
[electronic resource] /
$c
edited by Sergio Amat, Sonia Busquier.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
V, 286 p. 117 illus., 113 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SEMA SIMAI Springer Series,
$x
2199-3041 ;
$v
10
505
0
$a
1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton’s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis.
520
$a
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. .
650
0
$a
Numerical analysis.
$3
527939
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
0
$a
Functional analysis.
$3
527706
650
0
$a
Difference equations.
$3
527665
650
0
$a
Functional equations.
$3
527838
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Algorithms.
$3
527865
650
1 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
650
2 4
$a
Functional Analysis.
$3
672166
650
2 4
$a
Difference and Functional Equations.
$3
672077
650
2 4
$a
Computational Science and Engineering.
$3
670319
700
1
$a
Amat, Sergio.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1113883
700
1
$a
Busquier, Sonia.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1113884
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319392271
776
0 8
$i
Printed edition:
$z
9783319392295
776
0 8
$i
Printed edition:
$z
9783319818450
830
0
$a
SEMA SIMAI Springer Series,
$x
2199-3041 ;
$v
5
$3
1262367
856
4 0
$u
https://doi.org/10.1007/978-3-319-39228-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入