語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fractional Order Darwinian Particle ...
~
Couceiro, Micael.
Fractional Order Darwinian Particle Swarm Optimization = Applications and Evaluation of an Evolutionary Algorithm /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Fractional Order Darwinian Particle Swarm Optimization/ by Micael Couceiro, Pedram Ghamisi.
其他題名:
Applications and Evaluation of an Evolutionary Algorithm /
作者:
Couceiro, Micael.
其他作者:
Ghamisi, Pedram.
面頁冊數:
X, 75 p. 27 illus., 24 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-19635-0
ISBN:
9783319196350
Fractional Order Darwinian Particle Swarm Optimization = Applications and Evaluation of an Evolutionary Algorithm /
Couceiro, Micael.
Fractional Order Darwinian Particle Swarm Optimization
Applications and Evaluation of an Evolutionary Algorithm /[electronic resource] :by Micael Couceiro, Pedram Ghamisi. - 1st ed. 2016. - X, 75 p. 27 illus., 24 illus. in color.online resource. - SpringerBriefs in Applied Sciences and Technology,2191-530X. - SpringerBriefs in Applied Sciences and Technology,.
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
ISBN: 9783319196350
Standard No.: 10.1007/978-3-319-19635-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Fractional Order Darwinian Particle Swarm Optimization = Applications and Evaluation of an Evolutionary Algorithm /
LDR
:02535nam a22003975i 4500
001
979759
003
DE-He213
005
20200705020625.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319196350
$9
978-3-319-19635-0
024
7
$a
10.1007/978-3-319-19635-0
$2
doi
035
$a
978-3-319-19635-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Couceiro, Micael.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1101554
245
1 0
$a
Fractional Order Darwinian Particle Swarm Optimization
$h
[electronic resource] :
$b
Applications and Evaluation of an Evolutionary Algorithm /
$c
by Micael Couceiro, Pedram Ghamisi.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
X, 75 p. 27 illus., 24 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Applied Sciences and Technology,
$x
2191-530X
505
0
$a
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
520
$a
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
System theory.
$3
566168
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Systems Theory, Control.
$3
669337
700
1
$a
Ghamisi, Pedram.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1101555
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319196367
776
0 8
$i
Printed edition:
$z
9783319196343
830
0
$a
SpringerBriefs in Applied Sciences and Technology,
$x
2191-530X
$3
1253575
856
4 0
$u
https://doi.org/10.1007/978-3-319-19635-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入