語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hierarchical Modular Granular Neural...
~
Sanchez, Daniela.
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation/ by Daniela Sanchez, Patricia Melin.
作者:
Sanchez, Daniela.
其他作者:
Melin, Patricia.
面頁冊數:
VIII, 101 p. 57 illus., 50 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-28862-8
ISBN:
9783319288628
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation
Sanchez, Daniela.
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation
[electronic resource] /by Daniela Sanchez, Patricia Melin. - 1st ed. 2016. - VIII, 101 p. 57 illus., 50 illus. in color.online resource. - SpringerBriefs in Computational Intelligence,2625-3704. - SpringerBriefs in Computational Intelligence,.
Introduction -- Background and Theory -- Proposed Method -- Application to Human Recognition -- Experimental Results -- Conclusions.
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
ISBN: 9783319288628
Standard No.: 10.1007/978-3-319-28862-8doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation
LDR
:02302nam a22003975i 4500
001
981161
003
DE-He213
005
20200705171311.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319288628
$9
978-3-319-28862-8
024
7
$a
10.1007/978-3-319-28862-8
$2
doi
035
$a
978-3-319-28862-8
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Sanchez, Daniela.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1105992
245
1 0
$a
Hierarchical Modular Granular Neural Networks with Fuzzy Aggregation
$h
[electronic resource] /
$c
by Daniela Sanchez, Patricia Melin.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
VIII, 101 p. 57 illus., 50 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
505
0
$a
Introduction -- Background and Theory -- Proposed Method -- Application to Human Recognition -- Experimental Results -- Conclusions.
520
$a
In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Neural networks (Computer science) .
$3
1253765
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
884110
700
1
$a
Melin, Patricia.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
678025
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319288611
776
0 8
$i
Printed edition:
$z
9783319288635
830
0
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
$3
1254760
856
4 0
$u
https://doi.org/10.1007/978-3-319-28862-8
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入