語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big Visual Data Analysis = Scene Cla...
~
Chen, Chen.
Big Visual Data Analysis = Scene Classification and Geometric Labeling /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Big Visual Data Analysis/ by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo.
其他題名:
Scene Classification and Geometric Labeling /
作者:
Chen, Chen.
其他作者:
Ren, Yuzhuo.
面頁冊數:
X, 122 p. 94 illus., 12 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Signal processing. -
電子資源:
https://doi.org/10.1007/978-981-10-0631-9
ISBN:
9789811006319
Big Visual Data Analysis = Scene Classification and Geometric Labeling /
Chen, Chen.
Big Visual Data Analysis
Scene Classification and Geometric Labeling /[electronic resource] :by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. - 1st ed. 2016. - X, 122 p. 94 illus., 12 illus. in color.online resource. - SpringerBriefs in Signal Processing,2196-4076. - SpringerBriefs in Signal Processing,.
Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work.
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
ISBN: 9789811006319
Standard No.: 10.1007/978-981-10-0631-9doiSubjects--Topical Terms:
561459
Signal processing.
LC Class. No.: TK5102.9
Dewey Class. No.: 621.382
Big Visual Data Analysis = Scene Classification and Geometric Labeling /
LDR
:02552nam a22004215i 4500
001
981167
003
DE-He213
005
20200701073306.0
007
cr nn 008mamaa
008
201211s2016 si | s |||| 0|eng d
020
$a
9789811006319
$9
978-981-10-0631-9
024
7
$a
10.1007/978-981-10-0631-9
$2
doi
035
$a
978-981-10-0631-9
050
4
$a
TK5102.9
050
4
$a
TA1637-1638
072
7
$a
TTBM
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
TTBM
$2
thema
072
7
$a
UYS
$2
thema
082
0 4
$a
621.382
$2
23
100
1
$a
Chen, Chen.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1106042
245
1 0
$a
Big Visual Data Analysis
$h
[electronic resource] :
$b
Scene Classification and Geometric Labeling /
$c
by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo.
250
$a
1st ed. 2016.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
X, 122 p. 94 illus., 12 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Signal Processing,
$x
2196-4076
505
0
$a
Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work.
520
$a
This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks.
650
0
$a
Signal processing.
$3
561459
650
0
$a
Image processing.
$3
557495
650
0
$a
Speech processing systems.
$3
564428
650
0
$a
Optical data processing.
$3
639187
650
0
$a
Mathematics.
$3
527692
650
0
$a
Visualization.
$3
574210
650
1 4
$a
Signal, Image and Speech Processing.
$3
670837
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
700
1
$a
Ren, Yuzhuo.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1106043
700
1
$a
Kuo, C.-C. Jay.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
682837
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811006296
776
0 8
$i
Printed edition:
$z
9789811006302
830
0
$a
SpringerBriefs in Signal Processing,
$x
2196-4076
$3
1257405
856
4 0
$u
https://doi.org/10.1007/978-981-10-0631-9
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入