語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Estimation and Testing Under Sparsit...
~
SpringerLink (Online service)
Estimation and Testing Under Sparsity = École d'Été de Probabilités de Saint-Flour XLV – 2015 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Estimation and Testing Under Sparsity/ by Sara van de Geer.
其他題名:
École d'Été de Probabilités de Saint-Flour XLV – 2015 /
作者:
van de Geer, Sara.
面頁冊數:
XIII, 274 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Probabilities. -
電子資源:
https://doi.org/10.1007/978-3-319-32774-7
ISBN:
9783319327747
Estimation and Testing Under Sparsity = École d'Été de Probabilités de Saint-Flour XLV – 2015 /
van de Geer, Sara.
Estimation and Testing Under Sparsity
École d'Été de Probabilités de Saint-Flour XLV – 2015 /[electronic resource] :by Sara van de Geer. - 1st ed. 2016. - XIII, 274 p.online resource. - École d'Été de Probabilités de Saint-Flour,21590721-5363 ;. - École d'Été de Probabilités de Saint-Flour,2151.
1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms.- 9 Probability inequalities for matrices.- 10 Inequalities for the centred empirical risk and its derivative.- 11 The margin condition.- 12 Some worked-out examples.- 13 Brouwer’s fixed point theorem and sparsity.- 14 Asymptotically linear estimators of the precision matrix.- 15 Lower bounds for sparse quadratic forms.- 16 Symmetrization, contraction and concentration.- 17 Chaining including concentration.- 18 Metric structure of convex hulls.
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
ISBN: 9783319327747
Standard No.: 10.1007/978-3-319-32774-7doiSubjects--Topical Terms:
527847
Probabilities.
LC Class. No.: QA273.A1-274.9
Dewey Class. No.: 519.2
Estimation and Testing Under Sparsity = École d'Été de Probabilités de Saint-Flour XLV – 2015 /
LDR
:02952nam a22004335i 4500
001
981333
003
DE-He213
005
20200701170029.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319327747
$9
978-3-319-32774-7
024
7
$a
10.1007/978-3-319-32774-7
$2
doi
035
$a
978-3-319-32774-7
050
4
$a
QA273.A1-274.9
050
4
$a
QA274-274.9
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
100
1
$a
van de Geer, Sara.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1273788
245
1 0
$a
Estimation and Testing Under Sparsity
$h
[electronic resource] :
$b
École d'Été de Probabilités de Saint-Flour XLV – 2015 /
$c
by Sara van de Geer.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XIII, 274 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
École d'Été de Probabilités de Saint-Flour,
$x
0721-5363 ;
$v
2159
505
0
$a
1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms.- 9 Probability inequalities for matrices.- 10 Inequalities for the centred empirical risk and its derivative.- 11 The margin condition.- 12 Some worked-out examples.- 13 Brouwer’s fixed point theorem and sparsity.- 14 Asymptotically linear estimators of the precision matrix.- 15 Lower bounds for sparse quadratic forms.- 16 Symmetrization, contraction and concentration.- 17 Chaining including concentration.- 18 Metric structure of convex hulls.
520
$a
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
650
0
$a
Probabilities.
$3
527847
650
0
$a
Statistics .
$3
1253516
650
0
$a
Mathematical statistics.
$3
527941
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Probability and Statistics in Computer Science.
$3
669886
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319327730
776
0 8
$i
Printed edition:
$z
9783319327754
830
0
$a
École d'Été de Probabilités de Saint-Flour,
$x
0721-5363 ;
$v
2151
$3
1256986
856
4 0
$u
https://doi.org/10.1007/978-3-319-32774-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入