語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feasibility Model of Solar Energy Pl...
~
SpringerLink (Online service)
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques/ by Mrinmoy Majumder, Apu K. Saha.
作者:
Majumder, Mrinmoy.
其他作者:
Saha, Apu K.
面頁冊數:
X, 49 p. 14 illus., 13 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Renewable energy resources. -
電子資源:
https://doi.org/10.1007/978-981-287-308-8
ISBN:
9789812873088
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
Majumder, Mrinmoy.
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
[electronic resource] /by Mrinmoy Majumder, Apu K. Saha. - 1st ed. 2016. - X, 49 p. 14 illus., 13 illus. in color.online resource. - SpringerBriefs in Energy,2191-5520. - SpringerBriefs in Energy,.
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location ? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
ISBN: 9789812873088
Standard No.: 10.1007/978-981-287-308-8doiSubjects--Topical Terms:
563364
Renewable energy resources.
LC Class. No.: TJ807-830
Dewey Class. No.: 621.042
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
LDR
:02308nam a22003975i 4500
001
981416
003
DE-He213
005
20200702110057.0
007
cr nn 008mamaa
008
201211s2016 si | s |||| 0|eng d
020
$a
9789812873088
$9
978-981-287-308-8
024
7
$a
10.1007/978-981-287-308-8
$2
doi
035
$a
978-981-287-308-8
050
4
$a
TJ807-830
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
072
7
$a
THV
$2
thema
082
0 4
$a
621.042
$2
23
100
1
$a
Majumder, Mrinmoy.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1076479
245
1 0
$a
Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques
$h
[electronic resource] /
$c
by Mrinmoy Majumder, Apu K. Saha.
250
$a
1st ed. 2016.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
X, 49 p. 14 illus., 13 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Energy,
$x
2191-5520
505
0
$a
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location ? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
520
$a
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
650
0
$a
Renewable energy resources.
$3
563364
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Energy systems.
$3
1253529
650
0
$a
Environmental economics.
$3
555780
650
0
$a
Climate change.
$2
bicssc
$3
1009004
650
1 4
$a
Renewable and Green Energy.
$3
683875
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Energy Systems.
$3
785876
650
2 4
$a
Environmental Economics.
$3
668788
650
2 4
$a
Climate Change/Climate Change Impacts.
$3
1023634
700
1
$a
Saha, Apu K.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1107828
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789812873071
776
0 8
$i
Printed edition:
$z
9789812873095
830
0
$a
SpringerBriefs in Energy,
$x
2191-5520
$3
1264468
856
4 0
$u
https://doi.org/10.1007/978-981-287-308-8
912
$a
ZDB-2-ENE
912
$a
ZDB-2-SXEN
950
$a
Energy (SpringerNature-40367)
950
$a
Energy (R0) (SpringerNature-43717)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入