語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical Analysis for High-Dimens...
~
Richardson, Sylvia.
Statistical Analysis for High-Dimensional Data = The Abel Symposium 2014 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Statistical Analysis for High-Dimensional Data/ edited by Arnoldo Frigessi, Peter Bühlmann, Ingrid Glad, Mette Langaas, Sylvia Richardson, Marina Vannucci.
其他題名:
The Abel Symposium 2014 /
其他作者:
Frigessi, Arnoldo.
面頁冊數:
XII, 306 p. 65 illus., 46 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer mathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-27099-9
ISBN:
9783319270999
Statistical Analysis for High-Dimensional Data = The Abel Symposium 2014 /
Statistical Analysis for High-Dimensional Data
The Abel Symposium 2014 /[electronic resource] :edited by Arnoldo Frigessi, Peter Bühlmann, Ingrid Glad, Mette Langaas, Sylvia Richardson, Marina Vannucci. - 1st ed. 2016. - XII, 306 p. 65 illus., 46 illus. in color.online resource. - Abel Symposia,112193-2808 ;. - Abel Symposia,10.
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al. .
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
ISBN: 9783319270999
Standard No.: 10.1007/978-3-319-27099-9doiSubjects--Topical Terms:
1199796
Computer mathematics.
LC Class. No.: QA71-90
Dewey Class. No.: 518
Statistical Analysis for High-Dimensional Data = The Abel Symposium 2014 /
LDR
:03904nam a22004095i 4500
001
981552
003
DE-He213
005
20200630202013.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319270999
$9
978-3-319-27099-9
024
7
$a
10.1007/978-3-319-27099-9
$2
doi
035
$a
978-3-319-27099-9
050
4
$a
QA71-90
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
245
1 0
$a
Statistical Analysis for High-Dimensional Data
$h
[electronic resource] :
$b
The Abel Symposium 2014 /
$c
edited by Arnoldo Frigessi, Peter Bühlmann, Ingrid Glad, Mette Langaas, Sylvia Richardson, Marina Vannucci.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XII, 306 p. 65 illus., 46 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Abel Symposia,
$x
2193-2808 ;
$v
11
505
0
$a
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al. .
520
$a
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Statistics .
$3
1253516
650
0
$a
Bioinformatics.
$3
583857
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
782247
700
1
$a
Frigessi, Arnoldo.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1106164
700
1
$a
Bühlmann, Peter.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1239339
700
1
$a
Glad, Ingrid.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1273941
700
1
$a
Langaas, Mette.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1273942
700
1
$a
Richardson, Sylvia.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1273943
700
1
$a
Vannucci, Marina.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
799703
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319270975
776
0 8
$i
Printed edition:
$z
9783319270982
776
0 8
$i
Printed edition:
$z
9783319800738
830
0
$a
Abel Symposia,
$x
2193-2808 ;
$v
10
$3
1261576
856
4 0
$u
https://doi.org/10.1007/978-3-319-27099-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入