語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advanced Multiresponse Process Optim...
~
SpringerLink (Online service)
Advanced Multiresponse Process Optimisation = An Intelligent and Integrated Approach /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Advanced Multiresponse Process Optimisation/ by Tatjana V. Šibalija, Vidosav D. Majstorović.
其他題名:
An Intelligent and Integrated Approach /
作者:
Šibalija, Tatjana V.
其他作者:
Majstorović, Vidosav D.
面頁冊數:
XVII, 298 p. 70 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Manufactures. -
電子資源:
https://doi.org/10.1007/978-3-319-19255-0
ISBN:
9783319192550
Advanced Multiresponse Process Optimisation = An Intelligent and Integrated Approach /
Šibalija, Tatjana V.
Advanced Multiresponse Process Optimisation
An Intelligent and Integrated Approach /[electronic resource] :by Tatjana V. Šibalija, Vidosav D. Majstorović. - 1st ed. 2016. - XVII, 298 p. 70 illus., 6 illus. in color.online resource.
Introduction -- Review of multiresponse optimisation approaches -- An intelligent, integrated, problem-independent method for multiresponse process optimisation -- Implementation of an intelligent, integrated, problem-independent method to multiresponse process optimisation -- Case studies -- Conclusion.
This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.
ISBN: 9783319192550
Standard No.: 10.1007/978-3-319-19255-0doiSubjects--Topical Terms:
680602
Manufactures.
LC Class. No.: TS1-2301
Dewey Class. No.: 670
Advanced Multiresponse Process Optimisation = An Intelligent and Integrated Approach /
LDR
:02716nam a22003975i 4500
001
981795
003
DE-He213
005
20201107223619.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319192550
$9
978-3-319-19255-0
024
7
$a
10.1007/978-3-319-19255-0
$2
doi
035
$a
978-3-319-19255-0
050
4
$a
TS1-2301
072
7
$a
TGP
$2
bicssc
072
7
$a
TEC020000
$2
bisacsh
072
7
$a
TGP
$2
thema
082
0 4
$a
670
$2
23
100
1
$a
Šibalija, Tatjana V.
$e
author.
$0
(orcid)0000-0001-7276-1659
$1
https://orcid.org/0000-0001-7276-1659
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1274093
245
1 0
$a
Advanced Multiresponse Process Optimisation
$h
[electronic resource] :
$b
An Intelligent and Integrated Approach /
$c
by Tatjana V. Šibalija, Vidosav D. Majstorović.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XVII, 298 p. 70 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- Review of multiresponse optimisation approaches -- An intelligent, integrated, problem-independent method for multiresponse process optimisation -- Implementation of an intelligent, integrated, problem-independent method to multiresponse process optimisation -- Case studies -- Conclusion.
520
$a
This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.
650
0
$a
Manufactures.
$3
680602
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Robotics.
$3
561941
650
0
$a
Automation.
$3
596698
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Operations research.
$3
573517
650
0
$a
Decision making.
$3
528319
650
1 4
$a
Manufacturing, Machines, Tools, Processes.
$3
1226012
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Robotics and Automation.
$3
782979
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Operations Research/Decision Theory.
$3
669176
700
1
$a
Majstorović, Vidosav D.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1274094
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319192543
776
0 8
$i
Printed edition:
$z
9783319192567
776
0 8
$i
Printed edition:
$z
9783319372594
856
4 0
$u
https://doi.org/10.1007/978-3-319-19255-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入