語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Special Theory of Relativity = F...
~
Christodoulides, Costas.
The Special Theory of Relativity = Foundations, Theory, Verification, Applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Special Theory of Relativity/ by Costas Christodoulides.
其他題名:
Foundations, Theory, Verification, Applications /
作者:
Christodoulides, Costas.
面頁冊數:
XVII, 480 p. 130 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Gravitation. -
電子資源:
https://doi.org/10.1007/978-3-319-25274-2
ISBN:
9783319252742
The Special Theory of Relativity = Foundations, Theory, Verification, Applications /
Christodoulides, Costas.
The Special Theory of Relativity
Foundations, Theory, Verification, Applications /[electronic resource] :by Costas Christodoulides. - 1st ed. 2016. - XVII, 480 p. 130 illus.online resource. - Undergraduate Lecture Notes in Physics,2192-4791. - Undergraduate Lecture Notes in Physics,.
Historical Introduction -- The Main Landmarks in the Development of the Special Theory of Relativity -- The Principle of Relativity of Galileo. Galileo’s Invariance Hypothesis. The Law of Inertia. Inertial Frames of Reference Relativity -- Rømer and the Speed of Light -- Newton’s Laws of Motion. Inertia and Inertial Frames of Reference -- The Aberration of Light -- Arago’s Measurements Concerning the Constancy of the Speed of Light from Stars -- Measurements of the Speed of Light in the Laboratory -- Attempts to Measure the Dragging of Aether by Moving Media -- Maxwell’s Equations and the Wave Equation -- The Experiment of Michelson and Morley -- The Lorentz-Fitzgerald Contraction Hypothesis -- The Increase of the Mass of the Electron with Speed -- The Invariance of Maxwell’s Equations and the Lorentz Transformation -- The Formulation of the Special Theory of Relativity -- Prolegomena -- Inertial Frames of Reference -- The Calibration of a Frame of Reference and the Synchronization of its Clocks -- The Relativity of Simultaneity -- The Relativity of Time and Length -- The Inevitability of the Special Theory of Relativity -- Relativistic Kinematics -- The Lorentz Transformation for the Coordinates of an Event -- The Transformation of Velocity -- The Transformation of Acceleration -- Applications of Relativistic Kinematics -- The ‘Meson’ Paradox -- The apparent focusing of fast charged particle beams due to the dilation of time -- The Sagnac Effect -- Clocks Moving Around the Earth -- The Experiment of Hafele and Keating -- Einstein’s Train -- The Twin Paradox -- Motion with a Constant Proper Acceleration. Hyperbolic Motion -- Two Successive Lorentz Transformations. The Wigner Rotation -- Optical Phenomena -- The Aberration of Light -- Fizeau’s Experiment. Fresnel’s Aether Dragging Theory -- The Doppler Effect -- Relativistic Beaming or the Headlight Effect -- The Pressure Exerted by Light -- Relativistic Dynamics -- The Dfinition of Relativistic Momentum. Relativistic Mass -- Relativistic Energy -- The Relationship Between Momentum and Energy -- Classical Approximations -- Particles with Zero Rest Mass -- The Conservation of Momentum and of Energy -- The Equivalence of Mass and Energy -- The Transformation of Momentum and Energy -- The Zero-Momentum Frame of Reference -- The Transformation of the Total Momentum and the Total Energy of a System of Particles -- The Collision of two Identical Particles -- The Transformation of Force -- Motion Under the Influence of a Constant Force. The Motion of a Charged Particle in a Constant Uniform Electric Field -- The Motion of a Charged Particle in a Constant Homogeneous Magnetic Field -- Applications of Relativistic Dynamics -- The Compton Effect -- The Inverse Compton Effect -- The Consequences of the Special Theory of Relativity on the Design of Particle Accelerators -- Mass Defect and Binding Energy of the Atomic Nucleus -- Threshold Energy -- The General Equations for the Motion of a Relativistic Rocket -- Minkowski’s Spacetime and Four-Vectors -- The ‘World’ of Minkowski -- Four-Vectors -- Electromagnetism -- Introduction -- The Invariance of Electric Charge -- The Transformations of the Electric Field and the Magnetic Field -- The Fields of a Moving Electric Charge -- The Derivation of the Differential form of the Biot-Savart Law from Coulomb’s Law -- The Force Exerted on a Moving Charge by an Electric Current -- Experiments -- The Speed of Light -- The Aether -- The Dilation of Time -- The Relativistic Doppler Effect -- The Contraction of Length -- The Test of the Predictions of Relativistic Kinematics -- The Sagnac Effect -- The Relativistic Mass -- The Equivalence of Mass and Energy -- The Test of the Predictions of Relativistic Dynamics -- The Invariance of Electric Charge -- Appendix 1. The Paradox of the Room and the Rod -- Appendix 2. The Appearance of Moving Bodies -- Appendix 3. The Derivation of the Expression for the Relativistic Mass in General -- Appendix .4. The Invariance of the Equations of Maxwell and the Wave Equation Under the Lorentz Transformation -- Appendix 5. Tachyons -- Appendix 6. The Lorentz Transformation in Matrix Form -- Appendix 7. Table of Some Functions of the Speed -- Solutions of the Problem.
This book offers a comprehensive, university-level introduction to Einstein’s Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity. The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices. As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book. It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics needed is of an upper-intermediate level, the book will also appeal to a more general readership.
ISBN: 9783319252742
Standard No.: 10.1007/978-3-319-25274-2doiSubjects--Topical Terms:
591793
Gravitation.
LC Class. No.: QC178
Dewey Class. No.: 530.1
The Special Theory of Relativity = Foundations, Theory, Verification, Applications /
LDR
:06839nam a22004215i 4500
001
982159
003
DE-He213
005
20200630093649.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319252742
$9
978-3-319-25274-2
024
7
$a
10.1007/978-3-319-25274-2
$2
doi
035
$a
978-3-319-25274-2
050
4
$a
QC178
050
4
$a
QC173.5-173.65
072
7
$a
PHR
$2
bicssc
072
7
$a
SCI061000
$2
bisacsh
072
7
$a
PHDV
$2
thema
072
7
$a
PHR
$2
thema
082
0 4
$a
530.1
$2
23
100
1
$a
Christodoulides, Costas.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1106271
245
1 4
$a
The Special Theory of Relativity
$h
[electronic resource] :
$b
Foundations, Theory, Verification, Applications /
$c
by Costas Christodoulides.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
XVII, 480 p. 130 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Undergraduate Lecture Notes in Physics,
$x
2192-4791
505
0
$a
Historical Introduction -- The Main Landmarks in the Development of the Special Theory of Relativity -- The Principle of Relativity of Galileo. Galileo’s Invariance Hypothesis. The Law of Inertia. Inertial Frames of Reference Relativity -- Rømer and the Speed of Light -- Newton’s Laws of Motion. Inertia and Inertial Frames of Reference -- The Aberration of Light -- Arago’s Measurements Concerning the Constancy of the Speed of Light from Stars -- Measurements of the Speed of Light in the Laboratory -- Attempts to Measure the Dragging of Aether by Moving Media -- Maxwell’s Equations and the Wave Equation -- The Experiment of Michelson and Morley -- The Lorentz-Fitzgerald Contraction Hypothesis -- The Increase of the Mass of the Electron with Speed -- The Invariance of Maxwell’s Equations and the Lorentz Transformation -- The Formulation of the Special Theory of Relativity -- Prolegomena -- Inertial Frames of Reference -- The Calibration of a Frame of Reference and the Synchronization of its Clocks -- The Relativity of Simultaneity -- The Relativity of Time and Length -- The Inevitability of the Special Theory of Relativity -- Relativistic Kinematics -- The Lorentz Transformation for the Coordinates of an Event -- The Transformation of Velocity -- The Transformation of Acceleration -- Applications of Relativistic Kinematics -- The ‘Meson’ Paradox -- The apparent focusing of fast charged particle beams due to the dilation of time -- The Sagnac Effect -- Clocks Moving Around the Earth -- The Experiment of Hafele and Keating -- Einstein’s Train -- The Twin Paradox -- Motion with a Constant Proper Acceleration. Hyperbolic Motion -- Two Successive Lorentz Transformations. The Wigner Rotation -- Optical Phenomena -- The Aberration of Light -- Fizeau’s Experiment. Fresnel’s Aether Dragging Theory -- The Doppler Effect -- Relativistic Beaming or the Headlight Effect -- The Pressure Exerted by Light -- Relativistic Dynamics -- The Dfinition of Relativistic Momentum. Relativistic Mass -- Relativistic Energy -- The Relationship Between Momentum and Energy -- Classical Approximations -- Particles with Zero Rest Mass -- The Conservation of Momentum and of Energy -- The Equivalence of Mass and Energy -- The Transformation of Momentum and Energy -- The Zero-Momentum Frame of Reference -- The Transformation of the Total Momentum and the Total Energy of a System of Particles -- The Collision of two Identical Particles -- The Transformation of Force -- Motion Under the Influence of a Constant Force. The Motion of a Charged Particle in a Constant Uniform Electric Field -- The Motion of a Charged Particle in a Constant Homogeneous Magnetic Field -- Applications of Relativistic Dynamics -- The Compton Effect -- The Inverse Compton Effect -- The Consequences of the Special Theory of Relativity on the Design of Particle Accelerators -- Mass Defect and Binding Energy of the Atomic Nucleus -- Threshold Energy -- The General Equations for the Motion of a Relativistic Rocket -- Minkowski’s Spacetime and Four-Vectors -- The ‘World’ of Minkowski -- Four-Vectors -- Electromagnetism -- Introduction -- The Invariance of Electric Charge -- The Transformations of the Electric Field and the Magnetic Field -- The Fields of a Moving Electric Charge -- The Derivation of the Differential form of the Biot-Savart Law from Coulomb’s Law -- The Force Exerted on a Moving Charge by an Electric Current -- Experiments -- The Speed of Light -- The Aether -- The Dilation of Time -- The Relativistic Doppler Effect -- The Contraction of Length -- The Test of the Predictions of Relativistic Kinematics -- The Sagnac Effect -- The Relativistic Mass -- The Equivalence of Mass and Energy -- The Test of the Predictions of Relativistic Dynamics -- The Invariance of Electric Charge -- Appendix 1. The Paradox of the Room and the Rod -- Appendix 2. The Appearance of Moving Bodies -- Appendix 3. The Derivation of the Expression for the Relativistic Mass in General -- Appendix .4. The Invariance of the Equations of Maxwell and the Wave Equation Under the Lorentz Transformation -- Appendix 5. Tachyons -- Appendix 6. The Lorentz Transformation in Matrix Form -- Appendix 7. Table of Some Functions of the Speed -- Solutions of the Problem.
520
$a
This book offers a comprehensive, university-level introduction to Einstein’s Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity. The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices. As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book. It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics needed is of an upper-intermediate level, the book will also appeal to a more general readership.
650
0
$a
Gravitation.
$3
591793
650
0
$a
Observations, Astronomical.
$3
1254353
650
0
$a
Astronomy—Observations.
$3
1254354
650
1 4
$a
Classical and Quantum Gravitation, Relativity Theory.
$3
769093
650
2 4
$a
Astronomy, Observations and Techniques.
$3
769023
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319252728
776
0 8
$i
Printed edition:
$z
9783319252735
830
0
$a
Undergraduate Lecture Notes in Physics,
$x
2192-4791
$3
1253454
856
4 0
$u
https://doi.org/10.1007/978-3-319-25274-2
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入