語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data Analysis and Visualization Usin...
~
SpringerLink (Online service)
Data Analysis and Visualization Using Python = Analyze Data to Create Visualizations for BI Systems /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data Analysis and Visualization Using Python/ by Dr. Ossama Embarak.
其他題名:
Analyze Data to Create Visualizations for BI Systems /
作者:
Embarak, Dr. Ossama.
面頁冊數:
XX, 374 p. 267 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Python (Computer program language). -
電子資源:
https://doi.org/10.1007/978-1-4842-4109-7
ISBN:
9781484241097
Data Analysis and Visualization Using Python = Analyze Data to Create Visualizations for BI Systems /
Embarak, Dr. Ossama.
Data Analysis and Visualization Using Python
Analyze Data to Create Visualizations for BI Systems /[electronic resource] :by Dr. Ossama Embarak. - 1st ed. 2018. - XX, 374 p. 267 illus.online resource.
Chapter 1: Introduction to data science with python -- Chapter 2: The importance of data visualization in business intelligence -- Chapter 3: Data collections structure -- Chapter 4: File I/O processing & Regular expressions -- Chapter 5: Data gathering and cleaning -- Chapter 6: Data exploring and analysis -- Chapter 7: Data visualization -- Chapter 8: Case Study.
Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far. You will: Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems.
ISBN: 9781484241097
Standard No.: 10.1007/978-1-4842-4109-7doiSubjects--Topical Terms:
1127623
Python (Computer program language).
LC Class. No.: QA76.73.P98
Dewey Class. No.: 005.133
Data Analysis and Visualization Using Python = Analyze Data to Create Visualizations for BI Systems /
LDR
:03264nam a22003975i 4500
001
988107
003
DE-He213
005
20200707001335.0
007
cr nn 008mamaa
008
201225s2018 xxu| s |||| 0|eng d
020
$a
9781484241097
$9
978-1-4842-4109-7
024
7
$a
10.1007/978-1-4842-4109-7
$2
doi
035
$a
978-1-4842-4109-7
050
4
$a
QA76.73.P98
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
005.133
$2
23
100
1
$a
Embarak, Dr. Ossama.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1280432
245
1 0
$a
Data Analysis and Visualization Using Python
$h
[electronic resource] :
$b
Analyze Data to Create Visualizations for BI Systems /
$c
by Dr. Ossama Embarak.
250
$a
1st ed. 2018.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
XX, 374 p. 267 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1: Introduction to data science with python -- Chapter 2: The importance of data visualization in business intelligence -- Chapter 3: Data collections structure -- Chapter 4: File I/O processing & Regular expressions -- Chapter 5: Data gathering and cleaning -- Chapter 6: Data exploring and analysis -- Chapter 7: Data visualization -- Chapter 8: Case Study.
520
$a
Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far. You will: Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems.
650
0
$a
Python (Computer program language).
$3
1127623
650
0
$a
Open source software.
$3
561177
650
0
$a
Computer programming.
$3
527822
650
0
$a
Big data.
$3
981821
650
1 4
$a
Python.
$3
1115944
650
2 4
$a
Open Source.
$3
1113081
650
2 4
$a
Big Data.
$3
1017136
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484241080
776
0 8
$i
Printed edition:
$z
9781484241103
776
0 8
$i
Printed edition:
$z
9781484246528
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4109-7
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入