語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Foraging-Inspired Optimisation Algor...
~
SpringerLink (Online service)
Foraging-Inspired Optimisation Algorithms
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Foraging-Inspired Optimisation Algorithms/ by Anthony Brabazon, Seán McGarraghy.
作者:
Brabazon, Anthony.
其他作者:
McGarraghy, Seán.
面頁冊數:
XVIII, 478 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Computers. -
電子資源:
https://doi.org/10.1007/978-3-319-59156-8
ISBN:
9783319591568
Foraging-Inspired Optimisation Algorithms
Brabazon, Anthony.
Foraging-Inspired Optimisation Algorithms
[electronic resource] /by Anthony Brabazon, Seán McGarraghy. - 1st ed. 2018. - XVIII, 478 p.online resource. - Natural Computing Series,1619-7127. - Natural Computing Series,.
Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
ISBN: 9783319591568
Standard No.: 10.1007/978-3-319-59156-8doiSubjects--Topical Terms:
565115
Computers.
LC Class. No.: QA75.5-76.95
Dewey Class. No.: 004.0151
Foraging-Inspired Optimisation Algorithms
LDR
:02709nam a22004335i 4500
001
988922
003
DE-He213
005
20200701170202.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319591568
$9
978-3-319-59156-8
024
7
$a
10.1007/978-3-319-59156-8
$2
doi
035
$a
978-3-319-59156-8
050
4
$a
QA75.5-76.95
050
4
$a
QA76.63
072
7
$a
UY
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
UY
$2
thema
072
7
$a
UYA
$2
thema
082
0 4
$a
004.0151
$2
23
100
1
$a
Brabazon, Anthony.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
680616
245
1 0
$a
Foraging-Inspired Optimisation Algorithms
$h
[electronic resource] /
$c
by Anthony Brabazon, Seán McGarraghy.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XVIII, 478 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Natural Computing Series,
$x
1619-7127
505
0
$a
Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
520
$a
This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
650
0
$a
Computers.
$3
565115
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Operations research.
$3
573517
650
0
$a
Management science.
$3
719678
650
0
$a
Decision making.
$3
528319
650
1 4
$a
Theory of Computation.
$3
669322
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Operations Research, Management Science.
$3
785065
650
2 4
$a
Operations Research/Decision Theory.
$3
669176
700
1
$a
McGarraghy, Seán.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1264501
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319591551
776
0 8
$i
Printed edition:
$z
9783319591575
776
0 8
$i
Printed edition:
$z
9783030096403
830
0
$a
Natural Computing Series,
$x
1619-7127
$3
1256952
856
4 0
$u
https://doi.org/10.1007/978-3-319-59156-8
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入