語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Textual and Visual Information Retri...
~
SpringerLink (Online service)
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis/ by S.G. Shaila, A Vadivel.
作者:
Shaila, S.G.
其他作者:
Vadivel, A.
面頁冊數:
XXVI, 123 p. 53 illus., 34 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Information storage and retrieval. -
電子資源:
https://doi.org/10.1007/978-981-13-2559-5
ISBN:
9789811325595
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
Shaila, S.G.
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
[electronic resource] /by S.G. Shaila, A Vadivel. - 1st ed. 2018. - XXVI, 123 p. 53 illus., 34 illus. in color.online resource.
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book’s overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
ISBN: 9789811325595
Standard No.: 10.1007/978-981-13-2559-5doiSubjects--Topical Terms:
1069252
Information storage and retrieval.
LC Class. No.: QA75.5-76.95
Dewey Class. No.: 025.04
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
LDR
:02800nam a22004095i 4500
001
989002
003
DE-He213
005
20200703172155.0
007
cr nn 008mamaa
008
201225s2018 si | s |||| 0|eng d
020
$a
9789811325595
$9
978-981-13-2559-5
024
7
$a
10.1007/978-981-13-2559-5
$2
doi
035
$a
978-981-13-2559-5
050
4
$a
QA75.5-76.95
072
7
$a
UNH
$2
bicssc
072
7
$a
COM030000
$2
bisacsh
072
7
$a
UNH
$2
thema
072
7
$a
UND
$2
thema
082
0 4
$a
025.04
$2
23
100
1
$a
Shaila, S.G.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1280981
245
1 0
$a
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
$h
[electronic resource] /
$c
by S.G. Shaila, A Vadivel.
250
$a
1st ed. 2018.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2018.
300
$a
XXVI, 123 p. 53 illus., 34 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
520
$a
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book’s overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
650
0
$a
Information storage and retrieval.
$3
1069252
650
0
$a
Multimedia information systems.
$3
1115395
650
0
$a
Data mining.
$3
528622
650
0
$a
Pattern recognition.
$3
1253525
650
1 4
$a
Information Storage and Retrieval.
$3
593926
650
2 4
$a
Multimedia Information Systems.
$3
669810
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Pattern Recognition.
$3
669796
700
1
$a
Vadivel, A.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1209208
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811325588
776
0 8
$i
Printed edition:
$z
9789811325601
776
0 8
$i
Printed edition:
$z
9789811347917
856
4 0
$u
https://doi.org/10.1007/978-981-13-2559-5
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入