語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Likelihood-Free Methods for Cognitiv...
~
Sederberg, Per B.
Likelihood-Free Methods for Cognitive Science
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Likelihood-Free Methods for Cognitive Science/ by James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner.
作者:
Palestro, James J.
其他作者:
Sederberg, Per B.
面頁冊數:
XIV, 129 p. 27 illus., 7 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Cognitive psychology. -
電子資源:
https://doi.org/10.1007/978-3-319-72425-6
ISBN:
9783319724256
Likelihood-Free Methods for Cognitive Science
Palestro, James J.
Likelihood-Free Methods for Cognitive Science
[electronic resource] /by James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner. - 1st ed. 2018. - XIV, 129 p. 27 illus., 7 illus. in color.online resource. - Computational Approaches to Cognition and Perception,2510-1889 . - Computational Approaches to Cognition and Perception,.
Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions.
This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. .
ISBN: 9783319724256
Standard No.: 10.1007/978-3-319-72425-6doiSubjects--Topical Terms:
556029
Cognitive psychology.
LC Class. No.: BF201
Dewey Class. No.: 153
Likelihood-Free Methods for Cognitive Science
LDR
:02735nam a22004095i 4500
001
989618
003
DE-He213
005
20200704154050.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319724256
$9
978-3-319-72425-6
024
7
$a
10.1007/978-3-319-72425-6
$2
doi
035
$a
978-3-319-72425-6
050
4
$a
BF201
072
7
$a
JMR
$2
bicssc
072
7
$a
PSY008000
$2
bisacsh
072
7
$a
JMR
$2
thema
082
0 4
$a
153
$2
23
100
1
$a
Palestro, James J.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1281465
245
1 0
$a
Likelihood-Free Methods for Cognitive Science
$h
[electronic resource] /
$c
by James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XIV, 129 p. 27 illus., 7 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Computational Approaches to Cognition and Perception,
$x
2510-1889
505
0
$a
Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions.
520
$a
This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. .
650
0
$a
Cognitive psychology.
$3
556029
650
1 4
$a
Cognitive Psychology.
$3
593892
700
1
$a
Sederberg, Per B.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1281466
700
1
$a
Osth, Adam F.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1281467
700
1
$a
Van Zandt, Trisha.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
716389
700
1
$a
Turner, Brandon M.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1281468
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319724249
776
0 8
$i
Printed edition:
$z
9783319724263
776
0 8
$i
Printed edition:
$z
9783319891811
830
0
$a
Computational Approaches to Cognition and Perception,
$x
2510-1889
$3
1281292
856
4 0
$u
https://doi.org/10.1007/978-3-319-72425-6
912
$a
ZDB-2-BSP
912
$a
ZDB-2-SXBP
950
$a
Behavioral Science and Psychology (SpringerNature-41168)
950
$a
Behavioral Science and Psychology (R0) (SpringerNature-43718)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入