語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Python for Data Mining Quick Syntax ...
~
Porcu, Valentina.
Python for Data Mining Quick Syntax Reference
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Python for Data Mining Quick Syntax Reference/ by Valentina Porcu.
作者:
Porcu, Valentina.
面頁冊數:
XV, 260 p. 80 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Python (Computer program language). -
電子資源:
https://doi.org/10.1007/978-1-4842-4113-4
ISBN:
9781484241134
Python for Data Mining Quick Syntax Reference
Porcu, Valentina.
Python for Data Mining Quick Syntax Reference
[electronic resource] /by Valentina Porcu. - 1st ed. 2018. - XV, 260 p. 80 illus.online resource.
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning. .
ISBN: 9781484241134
Standard No.: 10.1007/978-1-4842-4113-4doiSubjects--Topical Terms:
1127623
Python (Computer program language).
LC Class. No.: QA76.73.P98
Dewey Class. No.: 005.133
Python for Data Mining Quick Syntax Reference
LDR
:02474nam a22003975i 4500
001
989663
003
DE-He213
005
20200701064318.0
007
cr nn 008mamaa
008
201225s2018 xxu| s |||| 0|eng d
020
$a
9781484241134
$9
978-1-4842-4113-4
024
7
$a
10.1007/978-1-4842-4113-4
$2
doi
035
$a
978-1-4842-4113-4
050
4
$a
QA76.73.P98
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
005.133
$2
23
100
1
$a
Porcu, Valentina.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1211957
245
1 0
$a
Python for Data Mining Quick Syntax Reference
$h
[electronic resource] /
$c
by Valentina Porcu.
250
$a
1st ed. 2018.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
XV, 260 p. 80 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
520
$a
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning. .
650
0
$a
Python (Computer program language).
$3
1127623
650
0
$a
Big data.
$3
981821
650
1 4
$a
Python.
$3
1115944
650
2 4
$a
Big Data.
$3
1017136
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484241127
776
0 8
$i
Printed edition:
$z
9781484241141
776
0 8
$i
Printed edition:
$z
9781484247426
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4113-4
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入