語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Graphs in Perturbation Theory = Alge...
~
SpringerLink (Online service)
Graphs in Perturbation Theory = Algebraic Structure and Asymptotics /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Graphs in Perturbation Theory/ by Michael Borinsky.
其他題名:
Algebraic Structure and Asymptotics /
作者:
Borinsky, Michael.
面頁冊數:
XVIII, 173 p. 23 illus., 3 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Physics. -
電子資源:
https://doi.org/10.1007/978-3-030-03541-9
ISBN:
9783030035419
Graphs in Perturbation Theory = Algebraic Structure and Asymptotics /
Borinsky, Michael.
Graphs in Perturbation Theory
Algebraic Structure and Asymptotics /[electronic resource] :by Michael Borinsky. - 1st ed. 2018. - XVIII, 173 p. 23 illus., 3 illus. in color.online resource. - Springer Theses, Recognizing Outstanding Ph.D. Research,2190-5053. - Springer Theses, Recognizing Outstanding Ph.D. Research,.
Introduction -- Graphs -- Graphical enumeration -- The ring of factorially divergent power series -- Coalgebraic graph structures -- The Hopf algebra of Feynman diagrams -- Examples from zero-dimensional QFT.
This book is the first systematic study of graphical enumeration and the asymptotic algebraic structures in perturbative quantum field theory. Starting with an exposition of the Hopf algebra structure of generic graphs, it reviews and summarizes the existing literature. It then applies this Hopf algebraic structure to the combinatorics of graphical enumeration for the first time, and introduces a novel method of asymptotic analysis to answer asymptotic questions. This major breakthrough has combinatorial applications far beyond the analysis of graphical enumeration. The book also provides detailed examples for the asymptotics of renormalizable quantum field theories, which underlie the Standard Model of particle physics. A deeper analysis of such renormalizable field theories reveals their algebraic lattice structure. The pedagogical presentation allows readers to apply these new methods to other problems, making this thesis a future classic for the study of asymptotic problems in quantum fields, network theory and far beyond.
ISBN: 9783030035419
Standard No.: 10.1007/978-3-030-03541-9doiSubjects--Topical Terms:
564049
Physics.
LC Class. No.: QC5.53
Dewey Class. No.: 530.15
Graphs in Perturbation Theory = Algebraic Structure and Asymptotics /
LDR
:02652nam a22003975i 4500
001
990073
003
DE-He213
005
20200630220814.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783030035419
$9
978-3-030-03541-9
024
7
$a
10.1007/978-3-030-03541-9
$2
doi
035
$a
978-3-030-03541-9
050
4
$a
QC5.53
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
530.15
$2
23
100
1
$a
Borinsky, Michael.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1210693
245
1 0
$a
Graphs in Perturbation Theory
$h
[electronic resource] :
$b
Algebraic Structure and Asymptotics /
$c
by Michael Borinsky.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XVIII, 173 p. 23 illus., 3 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
505
0
$a
Introduction -- Graphs -- Graphical enumeration -- The ring of factorially divergent power series -- Coalgebraic graph structures -- The Hopf algebra of Feynman diagrams -- Examples from zero-dimensional QFT.
520
$a
This book is the first systematic study of graphical enumeration and the asymptotic algebraic structures in perturbative quantum field theory. Starting with an exposition of the Hopf algebra structure of generic graphs, it reviews and summarizes the existing literature. It then applies this Hopf algebraic structure to the combinatorics of graphical enumeration for the first time, and introduces a novel method of asymptotic analysis to answer asymptotic questions. This major breakthrough has combinatorial applications far beyond the analysis of graphical enumeration. The book also provides detailed examples for the asymptotics of renormalizable quantum field theories, which underlie the Standard Model of particle physics. A deeper analysis of such renormalizable field theories reveals their algebraic lattice structure. The pedagogical presentation allows readers to apply these new methods to other problems, making this thesis a future classic for the study of asymptotic problems in quantum fields, network theory and far beyond.
650
0
$a
Physics.
$3
564049
650
0
$a
Graph theory.
$3
527884
650
0
$a
Elementary particles (Physics).
$3
1254811
650
0
$a
Quantum field theory.
$3
579915
650
1 4
$a
Mathematical Methods in Physics.
$3
670749
650
2 4
$a
Applications of Graph Theory and Complex Networks.
$3
1113468
650
2 4
$a
Graph Theory.
$3
786670
650
2 4
$a
Elementary Particles, Quantum Field Theory.
$3
672693
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030035402
776
0 8
$i
Printed edition:
$z
9783030035426
830
0
$a
Springer Theses, Recognizing Outstanding Ph.D. Research,
$x
2190-5053
$3
1253569
856
4 0
$u
https://doi.org/10.1007/978-3-030-03541-9
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入