語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Kähler Immersions of Kähler Manifold...
~
Loi, Andrea.
Kähler Immersions of Kähler Manifolds into Complex Space Forms
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Kähler Immersions of Kähler Manifolds into Complex Space Forms/ by Andrea Loi, Michela Zedda.
作者:
Loi, Andrea.
其他作者:
Zedda, Michela.
面頁冊數:
X, 100 p. 6 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Differential geometry. -
電子資源:
https://doi.org/10.1007/978-3-319-99483-3
ISBN:
9783319994833
Kähler Immersions of Kähler Manifolds into Complex Space Forms
Loi, Andrea.
Kähler Immersions of Kähler Manifolds into Complex Space Forms
[electronic resource] /by Andrea Loi, Michela Zedda. - 1st ed. 2018. - X, 100 p. 6 illus.online resource. - Lecture Notes of the Unione Matematica Italiana,231862-9113 ;. - Lecture Notes of the Unione Matematica Italiana,16.
- The Diastasis Function -- Calabi's Criterion -- Homogeneous Kähler manifolds -- Kähler-Einstein Manifolds -- Hartogs Type Domains -- Relatives -- Further Examples and Open Problems.
The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry.
ISBN: 9783319994833
Standard No.: 10.1007/978-3-319-99483-3doiSubjects--Topical Terms:
882213
Differential geometry.
LC Class. No.: QA641-670
Dewey Class. No.: 516.36
Kähler Immersions of Kähler Manifolds into Complex Space Forms
LDR
:02692nam a22003975i 4500
001
990394
003
DE-He213
005
20200705155103.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319994833
$9
978-3-319-99483-3
024
7
$a
10.1007/978-3-319-99483-3
$2
doi
035
$a
978-3-319-99483-3
050
4
$a
QA641-670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
100
1
$a
Loi, Andrea.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1209599
245
1 0
$a
Kähler Immersions of Kähler Manifolds into Complex Space Forms
$h
[electronic resource] /
$c
by Andrea Loi, Michela Zedda.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
X, 100 p. 6 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
23
505
0
$a
- The Diastasis Function -- Calabi's Criterion -- Homogeneous Kähler manifolds -- Kähler-Einstein Manifolds -- Hartogs Type Domains -- Relatives -- Further Examples and Open Problems.
520
$a
The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry.
650
0
$a
Differential geometry.
$3
882213
650
0
$a
Functions of complex variables.
$3
528649
650
1 4
$a
Differential Geometry.
$3
671118
650
2 4
$a
Several Complex Variables and Analytic Spaces.
$3
672032
700
1
$a
Zedda, Michela.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1209600
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319994826
776
0 8
$i
Printed edition:
$z
9783319994840
830
0
$a
Lecture Notes of the Unione Matematica Italiana,
$x
1862-9113 ;
$v
16
$3
1253963
856
4 0
$u
https://doi.org/10.1007/978-3-319-99483-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入