語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Gradient Discretisation Method
~
SpringerLink (Online service)
The Gradient Discretisation Method
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Gradient Discretisation Method/ by Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin.
作者:
Droniou, Jérôme.
其他作者:
Eymard, Robert.
面頁冊數:
XXIV, 497 p. 33 illus., 14 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer mathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-79042-8
ISBN:
9783319790428
The Gradient Discretisation Method
Droniou, Jérôme.
The Gradient Discretisation Method
[electronic resource] /by Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin. - 1st ed. 2018. - XXIV, 497 p. 33 illus., 14 illus. in color.online resource. - Mathématiques et Applications,821154-483X ;. - Mathématiques et Applications,76.
Part I Elliptic problems -- Part II Parabolic problems -- Part III Examples of gradient discretisation methods -- Part IV Appendix.
This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin–simon,="" discontinuous="" ascoli–arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations.
ISBN: 9783319790428
Standard No.: 10.1007/978-3-319-79042-8doiSubjects--Topical Terms:
1199796
Computer mathematics.
LC Class. No.: QA71-90
Dewey Class. No.: 518
The Gradient Discretisation Method
LDR
:03305nam a22003975i 4500
001
991341
003
DE-He213
005
20200704090717.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319790428
$9
978-3-319-79042-8
024
7
$a
10.1007/978-3-319-79042-8
$2
doi
035
$a
978-3-319-79042-8
050
4
$a
QA71-90
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Droniou, Jérôme.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1282994
245
1 4
$a
The Gradient Discretisation Method
$h
[electronic resource] /
$c
by Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XXIV, 497 p. 33 illus., 14 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Mathématiques et Applications,
$x
1154-483X ;
$v
82
505
0
$a
Part I Elliptic problems -- Part II Parabolic problems -- Part III Examples of gradient discretisation methods -- Part IV Appendix.
520
$a
This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin–simon,="" discontinuous="" ascoli–arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations.
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Partial differential equations.
$3
1102982
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Partial Differential Equations.
$3
671119
700
1
$a
Eymard, Robert.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1282995
700
1
$a
Gallouët, Thierry.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1282996
700
1
$a
Guichard, Cindy.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1282997
700
1
$a
Herbin, Raphaèle.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1282998
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319790411
776
0 8
$i
Printed edition:
$z
9783319790435
830
0
$a
Mathématiques et Applications,
$x
1154-483X ;
$v
76
$3
1263208
856
4 0
$u
https://doi.org/10.1007/978-3-319-79042-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入