語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Targeted Learning in Data Science = ...
~
van der Laan, Mark J.
Targeted Learning in Data Science = Causal Inference for Complex Longitudinal Studies /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Targeted Learning in Data Science/ by Mark J. van der Laan, Sherri Rose.
其他題名:
Causal Inference for Complex Longitudinal Studies /
作者:
van der Laan, Mark J.
其他作者:
Rose, Sherri.
面頁冊數:
XLII, 640 p. 37 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics . -
電子資源:
https://doi.org/10.1007/978-3-319-65304-4
ISBN:
9783319653044
Targeted Learning in Data Science = Causal Inference for Complex Longitudinal Studies /
van der Laan, Mark J.
Targeted Learning in Data Science
Causal Inference for Complex Longitudinal Studies /[electronic resource] :by Mark J. van der Laan, Sherri Rose. - 1st ed. 2018. - XLII, 640 p. 37 illus.online resource. - Springer Series in Statistics,0172-7397. - Springer Series in Statistics,.
Abbreviations and Notation -- Philosophy of Targeted Learning in Data Science -- Part I: Introductory Chapters -- 1. The Statistical Estimation Problem in Complex Longitudinal Big Data -- 2. Longitudinal Causal Models -- 3. Super Learner for Longitudinal Problems -- 4. Longitudinal Targeted Maximum Likelihood Estimation (LTMLE) -- 5. Understanding LTMLE -- 6. Why LTMLE? -- Part II:Additional Core Topics -- 7. One-Step TMLE -- IV: Observational Longitudinal Data -- 19. Super Learning in the ICU -- 20. Stochastic Single-Time-Point Interventions -- 21. Stochastic Multiple-Time-Point Interventions on Monitoring and Treatment -- 22. Collaborative LTMLE -- Part V: Optimal Dynamic Regimes -- 23. Targeted Adaptive Designs Learning the Optimal Dynamic Treatment -- 24. Targeted Learning of the Optimal Dynamic Treatment -- 25. Optimal Dynamic Treatments under Resource Constraints -- Part VI: Computing -- 26. ltmle() for R -- 27. Scaled Super Learner for R -- 28. Scaling CTMLE for Julia -- Part VII: Special Topics.-29. Data-Adaptive Target Parameters -- 30. Double Robust Inference for LTMLE -- 31. Higher-Order TMLE -- Appendix -- A. Online Targeted Learning Theory -- B. Computerization of the calculation of efficient influence curve -- C. TMLE applied to Capture/Recapture -- D. TMLE for High Dimensional Linear Regression -- E. TMLE of Causal Effect Based on Observing a Single Time Series.
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
ISBN: 9783319653044
Standard No.: 10.1007/978-3-319-65304-4doiSubjects--Topical Terms:
1253516
Statistics .
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Targeted Learning in Data Science = Causal Inference for Complex Longitudinal Studies /
LDR
:05047nam a22004095i 4500
001
992566
003
DE-He213
005
20200706155802.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319653044
$9
978-3-319-65304-4
024
7
$a
10.1007/978-3-319-65304-4
$2
doi
035
$a
978-3-319-65304-4
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
van der Laan, Mark J.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1284254
245
1 0
$a
Targeted Learning in Data Science
$h
[electronic resource] :
$b
Causal Inference for Complex Longitudinal Studies /
$c
by Mark J. van der Laan, Sherri Rose.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XLII, 640 p. 37 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in Statistics,
$x
0172-7397
505
0
$a
Abbreviations and Notation -- Philosophy of Targeted Learning in Data Science -- Part I: Introductory Chapters -- 1. The Statistical Estimation Problem in Complex Longitudinal Big Data -- 2. Longitudinal Causal Models -- 3. Super Learner for Longitudinal Problems -- 4. Longitudinal Targeted Maximum Likelihood Estimation (LTMLE) -- 5. Understanding LTMLE -- 6. Why LTMLE? -- Part II:Additional Core Topics -- 7. One-Step TMLE -- IV: Observational Longitudinal Data -- 19. Super Learning in the ICU -- 20. Stochastic Single-Time-Point Interventions -- 21. Stochastic Multiple-Time-Point Interventions on Monitoring and Treatment -- 22. Collaborative LTMLE -- Part V: Optimal Dynamic Regimes -- 23. Targeted Adaptive Designs Learning the Optimal Dynamic Treatment -- 24. Targeted Learning of the Optimal Dynamic Treatment -- 25. Optimal Dynamic Treatments under Resource Constraints -- Part VI: Computing -- 26. ltmle() for R -- 27. Scaled Super Learner for R -- 28. Scaling CTMLE for Julia -- Part VII: Special Topics.-29. Data-Adaptive Target Parameters -- 30. Double Robust Inference for LTMLE -- 31. Higher-Order TMLE -- Appendix -- A. Online Targeted Learning Theory -- B. Computerization of the calculation of efficient influence curve -- C. TMLE applied to Capture/Recapture -- D. TMLE for High Dimensional Linear Regression -- E. TMLE of Causal Effect Based on Observing a Single Time Series.
520
$a
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
650
0
$a
Statistics .
$3
1253516
650
0
$a
Big data.
$3
981821
650
0
$a
Biostatistics.
$3
783654
650
0
$a
Biomedical engineering.
$3
588770
650
0
$a
Public health.
$3
560998
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Big Data/Analytics.
$3
1106909
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Biomedical Engineering/Biotechnology.
$3
1068811
650
2 4
$a
Public Health.
$3
592982
700
1
$a
Rose, Sherri.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
787460
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319653037
776
0 8
$i
Printed edition:
$z
9783319653051
776
0 8
$i
Printed edition:
$z
9783030097363
830
0
$a
Springer Series in Statistics,
$x
0172-7397
$3
1257229
856
4 0
$u
https://doi.org/10.1007/978-3-319-65304-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入