語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational Diffusion MRI = MICCAI...
~
Ning, Lipeng.
Computational Diffusion MRI = MICCAI Workshop, Québec, Canada, September 2017 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational Diffusion MRI/ edited by Enrico Kaden, Francesco Grussu, Lipeng Ning, Chantal M. W. Tax, Jelle Veraart.
其他題名:
MICCAI Workshop, Québec, Canada, September 2017 /
其他作者:
Kaden, Enrico.
面頁冊數:
XI, 245 p. 82 illus., 69 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Biomathematics. -
電子資源:
https://doi.org/10.1007/978-3-319-73839-0
ISBN:
9783319738390
Computational Diffusion MRI = MICCAI Workshop, Québec, Canada, September 2017 /
Computational Diffusion MRI
MICCAI Workshop, Québec, Canada, September 2017 /[electronic resource] :edited by Enrico Kaden, Francesco Grussu, Lipeng Ning, Chantal M. W. Tax, Jelle Veraart. - 1st ed. 2018. - XI, 245 p. 82 illus., 69 illus. in color.online resource. - Mathematics and Visualization,1612-3786. - Mathematics and Visualization,.
Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K´evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jörgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
ISBN: 9783319738390
Standard No.: 10.1007/978-3-319-73839-0doiSubjects--Topical Terms:
527725
Biomathematics.
LC Class. No.: QH323.5
Dewey Class. No.: 570.285
Computational Diffusion MRI = MICCAI Workshop, Québec, Canada, September 2017 /
LDR
:04887nam a22004215i 4500
001
992894
003
DE-He213
005
20201123162926.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319738390
$9
978-3-319-73839-0
024
7
$a
10.1007/978-3-319-73839-0
$2
doi
035
$a
978-3-319-73839-0
050
4
$a
QH323.5
050
4
$a
QH324.2-324.25
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
570.285
$2
23
245
1 0
$a
Computational Diffusion MRI
$h
[electronic resource] :
$b
MICCAI Workshop, Québec, Canada, September 2017 /
$c
edited by Enrico Kaden, Francesco Grussu, Lipeng Ning, Chantal M. W. Tax, Jelle Veraart.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XI, 245 p. 82 illus., 69 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Mathematics and Visualization,
$x
1612-3786
505
0
$a
Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K´evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jörgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al.
520
$a
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
650
0
$a
Biomathematics.
$3
527725
650
0
$a
Statistics .
$3
1253516
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Optical data processing.
$3
639187
650
1 4
$a
Mathematical and Computational Biology.
$3
786706
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
670172
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
700
1
$a
Kaden, Enrico.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1202725
700
1
$a
Grussu, Francesco.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284507
700
1
$a
Ning, Lipeng.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284508
700
1
$a
Tax, Chantal M. W.
$e
editor.
$1
https://orcid.org/0000-0002-7480-8817
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284509
700
1
$a
Veraart, Jelle.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1284510
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319738383
776
0 8
$i
Printed edition:
$z
9783319738406
776
0 8
$i
Printed edition:
$z
9783030088668
830
0
$a
Mathematics and Visualization,
$x
1612-3786
$3
1258559
856
4 0
$u
https://doi.org/10.1007/978-3-319-73839-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入