語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Proofs from THE BOOK
~
Aigner, Martin.
Proofs from THE BOOK
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Proofs from THE BOOK/ by Martin Aigner, Günter M. Ziegler.
作者:
Aigner, Martin.
其他作者:
Ziegler, Günter M.
面頁冊數:
VIII, 326 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Number theory. -
電子資源:
https://doi.org/10.1007/978-3-662-57265-8
ISBN:
9783662572658
Proofs from THE BOOK
Aigner, Martin.
Proofs from THE BOOK
[electronic resource] /by Martin Aigner, Günter M. Ziegler. - 6th ed. 2018. - VIII, 326 p.online resource.
Number Theory: 1. Six proofs of the infinity of primes -- 2. Bertrand’s postulate -- 3. Binomial coefficients are (almost) never powers -- 4. Representing numbers as sums of two squares -- 5. The law of quadratic reciprocity -- 6. Every finite division ring is a field -- 7. The spectral theorem and Hadamard’s determinant problem -- 8. Some irrational numbers -- 9. Three times π2/6 -- Geometry: 10. Hilbert’s third problem: decomposing polyhedral -- 11. Lines in the plane and decompositions of graphs -- 12. The slope problem -- 13. Three applications of Euler’s formula -- 14. Cauchy’s rigidity theorem -- 15. The Borromean rings don’t exist -- 16. Touching simplices -- 17. Every large point set has an obtuse angle -- 18. Borsuk’s conjecture -- Analysis: 19. Sets, functions, and the continuum hypothesis -- 20. In praise of inequalities -- 21. The fundamental theorem of algebra -- 22. One square and an odd number of triangles -- 23. A theorem of Pólya on polynomials -- 24. Van der Waerden's permanent conjecture -- 25. On a lemma of Littlewood and Offord -- 26. Cotangent and the Herglotz trick -- 27. Buffon’s needle problem -- Combinatorics: 28. Pigeon-hole and double counting -- 29. Tiling rectangles -- 30. Three famous theorems on finite sets -- 31. Shuffling cards -- 32. Lattice paths and determinants -- 33. Cayley’s formula for the number of trees -- 34. Identities versus bijections -- 35. The finite Kakeya problem -- 36. Completing Latin squares -- Graph Theory: 37. Permanents and the power of entropy -- 38. The Dinitz problem -- 39. Five-coloring plane graphs -- 40. How to guard a museum -- 41. Turán’s graph theorem -- 42. Communicating without errors -- 43. The chromatic number of Kneser graphs -- 44. Of friends and politicians -- 45. Probability makes counting (sometimes) easy -- About the Illustrations -- Index.
This revised and enlarged sixth edition of Proofs from THE BOOK features an entirely new chapter on Van der Waerden’s permanent conjecture, as well as additional, highly original and delightful proofs in other chapters. From the citation on the occasion of the 2018 "Steele Prize for Mathematical Exposition" “… It is almost impossible to write a mathematics book that can be read and enjoyed by people of all levels and backgrounds, yet Aigner and Ziegler accomplish this feat of exposition with virtuoso style. […] This book does an invaluable service to mathematics, by illustrating for non-mathematicians what it is that mathematicians mean when they speak about beauty.” From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questions so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.
ISBN: 9783662572658
Standard No.: 10.1007/978-3-662-57265-8doiSubjects--Topical Terms:
527883
Number theory.
LC Class. No.: QA241-247.5
Dewey Class. No.: 512.7
Proofs from THE BOOK
LDR
:05072nam a22003855i 4500
001
994689
003
DE-He213
005
20201107184134.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783662572658
$9
978-3-662-57265-8
024
7
$a
10.1007/978-3-662-57265-8
$2
doi
035
$a
978-3-662-57265-8
050
4
$a
QA241-247.5
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
072
7
$a
PBH
$2
thema
082
0 4
$a
512.7
$2
23
100
1
$a
Aigner, Martin.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1077868
245
1 0
$a
Proofs from THE BOOK
$h
[electronic resource] /
$c
by Martin Aigner, Günter M. Ziegler.
250
$a
6th ed. 2018.
264
1
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2018.
300
$a
VIII, 326 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Number Theory: 1. Six proofs of the infinity of primes -- 2. Bertrand’s postulate -- 3. Binomial coefficients are (almost) never powers -- 4. Representing numbers as sums of two squares -- 5. The law of quadratic reciprocity -- 6. Every finite division ring is a field -- 7. The spectral theorem and Hadamard’s determinant problem -- 8. Some irrational numbers -- 9. Three times π2/6 -- Geometry: 10. Hilbert’s third problem: decomposing polyhedral -- 11. Lines in the plane and decompositions of graphs -- 12. The slope problem -- 13. Three applications of Euler’s formula -- 14. Cauchy’s rigidity theorem -- 15. The Borromean rings don’t exist -- 16. Touching simplices -- 17. Every large point set has an obtuse angle -- 18. Borsuk’s conjecture -- Analysis: 19. Sets, functions, and the continuum hypothesis -- 20. In praise of inequalities -- 21. The fundamental theorem of algebra -- 22. One square and an odd number of triangles -- 23. A theorem of Pólya on polynomials -- 24. Van der Waerden's permanent conjecture -- 25. On a lemma of Littlewood and Offord -- 26. Cotangent and the Herglotz trick -- 27. Buffon’s needle problem -- Combinatorics: 28. Pigeon-hole and double counting -- 29. Tiling rectangles -- 30. Three famous theorems on finite sets -- 31. Shuffling cards -- 32. Lattice paths and determinants -- 33. Cayley’s formula for the number of trees -- 34. Identities versus bijections -- 35. The finite Kakeya problem -- 36. Completing Latin squares -- Graph Theory: 37. Permanents and the power of entropy -- 38. The Dinitz problem -- 39. Five-coloring plane graphs -- 40. How to guard a museum -- 41. Turán’s graph theorem -- 42. Communicating without errors -- 43. The chromatic number of Kneser graphs -- 44. Of friends and politicians -- 45. Probability makes counting (sometimes) easy -- About the Illustrations -- Index.
520
$a
This revised and enlarged sixth edition of Proofs from THE BOOK features an entirely new chapter on Van der Waerden’s permanent conjecture, as well as additional, highly original and delightful proofs in other chapters. From the citation on the occasion of the 2018 "Steele Prize for Mathematical Exposition" “… It is almost impossible to write a mathematics book that can be read and enjoyed by people of all levels and backgrounds, yet Aigner and Ziegler accomplish this feat of exposition with virtuoso style. […] This book does an invaluable service to mathematics, by illustrating for non-mathematicians what it is that mathematicians mean when they speak about beauty.” From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questions so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.
650
0
$a
Number theory.
$3
527883
650
0
$a
Geometry.
$3
579899
650
0
$a
Mathematical analysis.
$3
527926
650
0
$a
Analysis (Mathematics).
$3
1253570
650
0
$a
Combinatorics.
$3
669353
650
0
$a
Graph theory.
$3
527884
650
0
$a
Computer science—Mathematics.
$3
1253519
650
1 4
$a
Number Theory.
$3
672023
650
2 4
$a
Analysis.
$3
669490
650
2 4
$a
Graph Theory.
$3
786670
650
2 4
$a
Mathematics of Computing.
$3
669457
700
1
$a
Ziegler, Günter M.
$e
author.
$1
https://orcid.org/0000-0003-1502-1915
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1263112
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783662572641
776
0 8
$i
Printed edition:
$z
9783662572665
856
4 0
$u
https://doi.org/10.1007/978-3-662-57265-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入