語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Transcriptome Analysis = Introductio...
~
Sanguanini, Michele.
Transcriptome Analysis = Introduction and Examples from the Neurosciences /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Transcriptome Analysis/ by Alessandro Cellerino, Michele Sanguanini.
其他題名:
Introduction and Examples from the Neurosciences /
作者:
Cellerino, Alessandro.
其他作者:
Sanguanini, Michele.
面頁冊數:
XIV, 188 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Biomathematics. -
電子資源:
https://doi.org/10.1007/978-88-7642-642-1
ISBN:
9788876426421
Transcriptome Analysis = Introduction and Examples from the Neurosciences /
Cellerino, Alessandro.
Transcriptome Analysis
Introduction and Examples from the Neurosciences /[electronic resource] :by Alessandro Cellerino, Michele Sanguanini. - 1st ed. 2018. - XIV, 188 p.online resource. - Lecture Notes (Scuola Normale Superiore) ;17. - Lecture Notes (Scuola Normale Superiore) ;18.
Preface -- Introduction: why study transcriptomics? -- 1. Data distribution and visualisation -- 2. Next-generation RNA sequencing -- 3. RNA-seq raw data processing -- 4. Differentially expressed gene detection & analysis -- 5. Unbiased clustering methods -- 6. Knowledge-based clustering methods -- 7. Network analysis -- 8. Mesoscale transcriptome analysis -- 9. Microscale transcriptome analysis -- Bibliography -- Index.
The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpretation of high-dimensional data is made difficult by the lack of a common language between experimental and data scientists. By combining theory with practical examples of how specific tools were used to obtain novel insights in biology, particularly in the neurosciences, the book intends to teach students how to design, analyse, and extract biological knowledge from transcriptome sequencing experiments. Undergraduate and graduate students in biomedical and quantitative sciences will benefit from this text as well as academics untrained in the subject.
ISBN: 9788876426421
Standard No.: 10.1007/978-88-7642-642-1doiSubjects--Topical Terms:
527725
Biomathematics.
LC Class. No.: QH323.5
Dewey Class. No.: 576.58
Transcriptome Analysis = Introduction and Examples from the Neurosciences /
LDR
:02679nam a22004095i 4500
001
994837
003
DE-He213
005
20200629140923.0
007
cr nn 008mamaa
008
201225s2018 it | s |||| 0|eng d
020
$a
9788876426421
$9
978-88-7642-642-1
024
7
$a
10.1007/978-88-7642-642-1
$2
doi
035
$a
978-88-7642-642-1
050
4
$a
QH323.5
050
4
$a
QH455
072
7
$a
PBW
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBW
$2
thema
082
0 4
$a
576.58
$2
23
082
0 4
$a
577.88
$2
23
100
1
$a
Cellerino, Alessandro.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1206414
245
1 0
$a
Transcriptome Analysis
$h
[electronic resource] :
$b
Introduction and Examples from the Neurosciences /
$c
by Alessandro Cellerino, Michele Sanguanini.
250
$a
1st ed. 2018.
264
1
$a
Pisa :
$b
Scuola Normale Superiore :
$b
Imprint: Edizioni della Normale,
$c
2018.
300
$a
XIV, 188 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes (Scuola Normale Superiore) ;
$v
17
505
0
$a
Preface -- Introduction: why study transcriptomics? -- 1. Data distribution and visualisation -- 2. Next-generation RNA sequencing -- 3. RNA-seq raw data processing -- 4. Differentially expressed gene detection & analysis -- 5. Unbiased clustering methods -- 6. Knowledge-based clustering methods -- 7. Network analysis -- 8. Mesoscale transcriptome analysis -- 9. Microscale transcriptome analysis -- Bibliography -- Index.
520
$a
The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpretation of high-dimensional data is made difficult by the lack of a common language between experimental and data scientists. By combining theory with practical examples of how specific tools were used to obtain novel insights in biology, particularly in the neurosciences, the book intends to teach students how to design, analyse, and extract biological knowledge from transcriptome sequencing experiments. Undergraduate and graduate students in biomedical and quantitative sciences will benefit from this text as well as academics untrained in the subject.
650
0
$a
Biomathematics.
$3
527725
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Systems biology.
$3
600045
650
1 4
$a
Genetics and Population Dynamics.
$3
670124
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Systems Biology.
$3
683756
700
1
$a
Sanguanini, Michele.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1206415
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9788876426414
830
0
$a
Lecture Notes (Scuola Normale Superiore) ;
$v
18
$3
1279425
856
4 0
$u
https://doi.org/10.1007/978-88-7642-642-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入