Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Structurally Unstable Quadratic Vect...
~
Artés, Joan C.
Structurally Unstable Quadratic Vector Fields of Codimension One
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Structurally Unstable Quadratic Vector Fields of Codimension One/ by Joan C. Artés, Jaume Llibre, Alex C. Rezende.
Author:
Artés, Joan C.
other author:
Llibre, Jaume.
Description:
VI, 267 p. 362 illus., 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Differential equations. -
Online resource:
https://doi.org/10.1007/978-3-319-92117-4
ISBN:
9783319921174
Structurally Unstable Quadratic Vector Fields of Codimension One
Artés, Joan C.
Structurally Unstable Quadratic Vector Fields of Codimension One
[electronic resource] /by Joan C. Artés, Jaume Llibre, Alex C. Rezende. - 1st ed. 2018. - VI, 267 p. 362 illus., 1 illus. in color.online resource.
Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography.
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .
ISBN: 9783319921174
Standard No.: 10.1007/978-3-319-92117-4doiSubjects--Topical Terms:
527664
Differential equations.
LC Class. No.: QA372
Dewey Class. No.: 515.352
Structurally Unstable Quadratic Vector Fields of Codimension One
LDR
:02052nam a22003855i 4500
001
995459
003
DE-He213
005
20200705044616.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319921174
$9
978-3-319-92117-4
024
7
$a
10.1007/978-3-319-92117-4
$2
doi
035
$a
978-3-319-92117-4
050
4
$a
QA372
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.352
$2
23
100
1
$a
Artés, Joan C.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1286449
245
1 0
$a
Structurally Unstable Quadratic Vector Fields of Codimension One
$h
[electronic resource] /
$c
by Joan C. Artés, Jaume Llibre, Alex C. Rezende.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2018.
300
$a
VI, 267 p. 362 illus., 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography.
520
$a
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .
650
0
$a
Differential equations.
$3
527664
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
1 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
700
1
$a
Llibre, Jaume.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1021384
700
1
$a
Rezende, Alex C.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1206440
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319921167
776
0 8
$i
Printed edition:
$z
9783319921181
856
4 0
$u
https://doi.org/10.1007/978-3-319-92117-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login