語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big Data for Urban Sustainability = ...
~
Moriarty, Patrick.
Big Data for Urban Sustainability = A Human-Centered Perspective /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Big Data for Urban Sustainability/ by Stephen Jia Wang, Patrick Moriarty.
其他題名:
A Human-Centered Perspective /
作者:
Wang, Stephen Jia.
其他作者:
Moriarty, Patrick.
面頁冊數:
XVI, 160 p. 14 illus., 9 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Renewable energy resources. -
電子資源:
https://doi.org/10.1007/978-3-319-73610-5
ISBN:
9783319736105
Big Data for Urban Sustainability = A Human-Centered Perspective /
Wang, Stephen Jia.
Big Data for Urban Sustainability
A Human-Centered Perspective /[electronic resource] :by Stephen Jia Wang, Patrick Moriarty. - 1st ed. 2018. - XVI, 160 p. 14 illus., 9 illus. in color.online resource.
Part I Features of Big data Systems -- Big Data Introduction.-Big data Systems landscape/ overview -- Part II Developing Sustainable Big data systems -- The trends of Big data systems -- Platform Architecture -- Reference Architecture -- ISUNS system design (Case Study) -- Part III Future Development to Enhance Eco-efficiency -- Potential Applications for Big data systems -- Performance Evaluation.
This book presents a practical framework for the application of big data, cloud, and pervasive and complex systems to sustainable solutions for urban environmental challenges. It covers the technologies, potential, and possible and impact of big data on energy efficiency and the urban environment. The book first introduces key aspects of big data, cloud services, pervasive computing, and mobile technologies from a pragmatic design perspective, including sample open source firmware. Cloud services, mobile and embedded platforms, interfaces, operating system design methods, networking, and middleware are all considered. The authors then explore in detail the framework, design principles, architecture and key components of developing energy systems to support sustainable urban environments. The included case study provides a pathway to improve the eco-efficiency of urban transport, demonstrating how to design an energy efficient next generation urban navigation system by leveraging vast cloud data sets on user-behavior. Ultimately, this resource maps big data’s pivotal intersection with rapid global urbanization along the path to a sustainable future.
ISBN: 9783319736105
Standard No.: 10.1007/978-3-319-73610-5doiSubjects--Topical Terms:
563364
Renewable energy resources.
LC Class. No.: TJ807-830
Dewey Class. No.: 621.042
Big Data for Urban Sustainability = A Human-Centered Perspective /
LDR
:02923nam a22003975i 4500
001
995903
003
DE-He213
005
20200630124114.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319736105
$9
978-3-319-73610-5
024
7
$a
10.1007/978-3-319-73610-5
$2
doi
035
$a
978-3-319-73610-5
050
4
$a
TJ807-830
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
072
7
$a
THV
$2
thema
082
0 4
$a
621.042
$2
23
100
1
$a
Wang, Stephen Jia.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1202295
245
1 0
$a
Big Data for Urban Sustainability
$h
[electronic resource] :
$b
A Human-Centered Perspective /
$c
by Stephen Jia Wang, Patrick Moriarty.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XVI, 160 p. 14 illus., 9 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Part I Features of Big data Systems -- Big Data Introduction.-Big data Systems landscape/ overview -- Part II Developing Sustainable Big data systems -- The trends of Big data systems -- Platform Architecture -- Reference Architecture -- ISUNS system design (Case Study) -- Part III Future Development to Enhance Eco-efficiency -- Potential Applications for Big data systems -- Performance Evaluation.
520
$a
This book presents a practical framework for the application of big data, cloud, and pervasive and complex systems to sustainable solutions for urban environmental challenges. It covers the technologies, potential, and possible and impact of big data on energy efficiency and the urban environment. The book first introduces key aspects of big data, cloud services, pervasive computing, and mobile technologies from a pragmatic design perspective, including sample open source firmware. Cloud services, mobile and embedded platforms, interfaces, operating system design methods, networking, and middleware are all considered. The authors then explore in detail the framework, design principles, architecture and key components of developing energy systems to support sustainable urban environments. The included case study provides a pathway to improve the eco-efficiency of urban transport, demonstrating how to design an energy efficient next generation urban navigation system by leveraging vast cloud data sets on user-behavior. Ultimately, this resource maps big data’s pivotal intersection with rapid global urbanization along the path to a sustainable future.
650
0
$a
Renewable energy resources.
$3
563364
650
0
$a
Sustainable development.
$3
556594
650
0
$a
Software engineering.
$3
562952
650
0
$a
Transportation engineering.
$3
633205
650
0
$a
Traffic engineering.
$3
639529
650
1 4
$a
Renewable and Green Energy.
$3
683875
650
2 4
$a
Sustainable Development.
$3
679787
650
2 4
$a
Software Engineering.
$3
669632
650
2 4
$a
Transportation Technology and Traffic Engineering.
$3
1069531
700
1
$a
Moriarty, Patrick.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
782342
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319736082
776
0 8
$i
Printed edition:
$z
9783319736099
776
0 8
$i
Printed edition:
$z
9783030088194
856
4 0
$u
https://doi.org/10.1007/978-3-319-73610-5
912
$a
ZDB-2-ENE
912
$a
ZDB-2-SXEN
950
$a
Energy (SpringerNature-40367)
950
$a
Energy (R0) (SpringerNature-43717)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入