Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Machine Learning for Text
~
Aggarwal, Charu C.
Machine Learning for Text
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Machine Learning for Text/ by Charu C. Aggarwal.
Author:
Aggarwal, Charu C.
Description:
XXIII, 493 p. 80 illus., 4 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Data mining. -
Online resource:
https://doi.org/10.1007/978-3-319-73531-3
ISBN:
9783319735313
Machine Learning for Text
Aggarwal, Charu C.
Machine Learning for Text
[electronic resource] /by Charu C. Aggarwal. - 1st ed. 2018. - XXIII, 493 p. 80 illus., 4 illus. in color.online resource.
1 An Introduction to Text Analytics -- 2 Text Preparation and Similarity Computation -- 3 Matrix Factorization and Topic Modeling -- 4 Text Clustering -- 5 Text Classification: Basic Models -- 6 Linear Models for Classification and Regression -- 7 Classifier Performance and Evaluation -- 8 Joint Text Mining with Heterogeneous Data -- 9 Information Retrieval and Search Engines -- 10 Text Sequence Modeling and Deep Learning -- 11 Text Summarization -- 12 Information Extraction -- 13 Opinion Mining and Sentiment Analysis -- 14 Text Segmentation and Event Detection.
Text analytics is a field that lies on the interface of information retrieval, machine learning, and natural language processing. This book carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this book span three broad categories: 1. Basic algorithms: Chapters 1 through 8 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. 2. Domain-sensitive learning: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This book covers text analytics and machine learning topics from the simple to the advanced. Since the coverage is extensive, multiple courses can be offered from the same book, depending on course level.
ISBN: 9783319735313
Standard No.: 10.1007/978-3-319-73531-3doiSubjects--Topical Terms:
528622
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Machine Learning for Text
LDR
:03238nam a22004095i 4500
001
996099
003
DE-He213
005
20200705065051.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319735313
$9
978-3-319-73531-3
024
7
$a
10.1007/978-3-319-73531-3
$2
doi
035
$a
978-3-319-73531-3
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.312
$2
23
100
1
$a
Aggarwal, Charu C.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
681062
245
1 0
$a
Machine Learning for Text
$h
[electronic resource] /
$c
by Charu C. Aggarwal.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XXIII, 493 p. 80 illus., 4 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1 An Introduction to Text Analytics -- 2 Text Preparation and Similarity Computation -- 3 Matrix Factorization and Topic Modeling -- 4 Text Clustering -- 5 Text Classification: Basic Models -- 6 Linear Models for Classification and Regression -- 7 Classifier Performance and Evaluation -- 8 Joint Text Mining with Heterogeneous Data -- 9 Information Retrieval and Search Engines -- 10 Text Sequence Modeling and Deep Learning -- 11 Text Summarization -- 12 Information Extraction -- 13 Opinion Mining and Sentiment Analysis -- 14 Text Segmentation and Event Detection.
520
$a
Text analytics is a field that lies on the interface of information retrieval, machine learning, and natural language processing. This book carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this book span three broad categories: 1. Basic algorithms: Chapters 1 through 8 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. 2. Domain-sensitive learning: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This book covers text analytics and machine learning topics from the simple to the advanced. Since the coverage is extensive, multiple courses can be offered from the same book, depending on course level.
650
0
$a
Data mining.
$3
528622
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Artificial Intelligence.
$3
646849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319735306
776
0 8
$i
Printed edition:
$z
9783319735320
776
0 8
$i
Printed edition:
$z
9783030088071
856
4 0
$u
https://doi.org/10.1007/978-3-319-73531-3
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login