語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automatic Tuning of Compilers Using ...
~
Ashouri, Amir H.
Automatic Tuning of Compilers Using Machine Learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Automatic Tuning of Compilers Using Machine Learning/ by Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano.
作者:
Ashouri, Amir H.
其他作者:
Palermo, Gianluca.
面頁冊數:
XVII, 118 p. 23 illus., 6 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-71489-9
ISBN:
9783319714899
Automatic Tuning of Compilers Using Machine Learning
Ashouri, Amir H.
Automatic Tuning of Compilers Using Machine Learning
[electronic resource] /by Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano. - 1st ed. 2018. - XVII, 118 p. 23 illus., 6 illus. in color.online resource. - PoliMI SpringerBriefs,2282-2577. - PoliMI SpringerBriefs,.
Background -- DSE Approach for Compiler Passes -- Addressing the Selection Problem of Passes using ML -- Intermediate Speedup Prediction for the Phase-ordering Problem -- Full-sequence Speedup Prediction for the Phase-ordering Problem -- Concluding Remarks. .
This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.
ISBN: 9783319714899
Standard No.: 10.1007/978-3-319-71489-9doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Automatic Tuning of Compilers Using Machine Learning
LDR
:02674nam a22003975i 4500
001
996619
003
DE-He213
005
20200703104754.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319714899
$9
978-3-319-71489-9
024
7
$a
10.1007/978-3-319-71489-9
$2
doi
035
$a
978-3-319-71489-9
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Ashouri, Amir H.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1287812
245
1 0
$a
Automatic Tuning of Compilers Using Machine Learning
$h
[electronic resource] /
$c
by Amir H. Ashouri, Gianluca Palermo, John Cavazos, Cristina Silvano.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XVII, 118 p. 23 illus., 6 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
PoliMI SpringerBriefs,
$x
2282-2577
505
0
$a
Background -- DSE Approach for Compiler Passes -- Addressing the Selection Problem of Passes using ML -- Intermediate Speedup Prediction for the Phase-ordering Problem -- Full-sequence Speedup Prediction for the Phase-ordering Problem -- Concluding Remarks. .
520
$a
This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Programming languages (Electronic computers).
$3
1127615
650
0
$a
Computer simulation.
$3
560190
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Palermo, Gianluca.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
782045
700
1
$a
Cavazos, John.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1287813
700
1
$a
Silvano, Cristina.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
782043
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319714882
776
0 8
$i
Printed edition:
$z
9783319714905
830
0
$a
PoliMI SpringerBriefs,
$x
2282-2577
$3
1254671
856
4 0
$u
https://doi.org/10.1007/978-3-319-71489-9
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入