語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Visual Knowledge Discovery and Machi...
~
SpringerLink (Online service)
Visual Knowledge Discovery and Machine Learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Visual Knowledge Discovery and Machine Learning/ by Boris Kovalerchuk.
作者:
Kovalerchuk, Boris.
面頁冊數:
XXI, 317 p. 274 illus., 263 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-319-73040-0
ISBN:
9783319730400
Visual Knowledge Discovery and Machine Learning
Kovalerchuk, Boris.
Visual Knowledge Discovery and Machine Learning
[electronic resource] /by Boris Kovalerchuk. - 1st ed. 2018. - XXI, 317 p. 274 illus., 263 illus. in color.online resource. - Intelligent Systems Reference Library,1441868-4394 ;. - Intelligent Systems Reference Library,67.
Motivation, Problems and Approach -- General Line Coordinates (GLC) -- Theoretical and Mathematical Basis of GLC -- Adjustable GLCs for decreasing occlusion and pattern simplification -- GLC Case Studies -- Discovering visual features and shape perception capabilities in GLC -- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L -- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.
This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
ISBN: 9783319730400
Standard No.: 10.1007/978-3-319-73040-0doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Visual Knowledge Discovery and Machine Learning
LDR
:02813nam a22004095i 4500
001
997601
003
DE-He213
005
20200629215450.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319730400
$9
978-3-319-73040-0
024
7
$a
10.1007/978-3-319-73040-0
$2
doi
035
$a
978-3-319-73040-0
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Kovalerchuk, Boris.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
894430
245
1 0
$a
Visual Knowledge Discovery and Machine Learning
$h
[electronic resource] /
$c
by Boris Kovalerchuk.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XXI, 317 p. 274 illus., 263 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Intelligent Systems Reference Library,
$x
1868-4394 ;
$v
144
505
0
$a
Motivation, Problems and Approach -- General Line Coordinates (GLC) -- Theoretical and Mathematical Basis of GLC -- Adjustable GLCs for decreasing occlusion and pattern simplification -- GLC Case Studies -- Discovering visual features and shape perception capabilities in GLC -- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L -- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.
520
$a
This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319730394
776
0 8
$i
Printed edition:
$z
9783319730417
776
0 8
$i
Printed edition:
$z
9783319892306
830
0
$a
Intelligent Systems Reference Library,
$x
1868-4394 ;
$v
67
$3
1253823
856
4 0
$u
https://doi.org/10.1007/978-3-319-73040-0
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入