語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometrical Themes Inspired by the N...
~
Herrera, Rafael.
Geometrical Themes Inspired by the N-body Problem
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Geometrical Themes Inspired by the N-body Problem/ edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera.
其他作者:
Hernández-Lamoneda, Luis.
面頁冊數:
VII, 128 p. 26 illus., 7 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Dynamics. -
電子資源:
https://doi.org/10.1007/978-3-319-71428-8
ISBN:
9783319714288
Geometrical Themes Inspired by the N-body Problem
Geometrical Themes Inspired by the N-body Problem
[electronic resource] /edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera. - 1st ed. 2018. - VII, 128 p. 26 illus., 7 illus. in color.online resource. - Lecture Notes in Mathematics,22040075-8434 ;. - Lecture Notes in Mathematics,2144.
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza’s notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol’d conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism.
ISBN: 9783319714288
Standard No.: 10.1007/978-3-319-71428-8doiSubjects--Topical Terms:
592238
Dynamics.
LC Class. No.: QA313
Dewey Class. No.: 515.39
Geometrical Themes Inspired by the N-body Problem
LDR
:02752nam a22004095i 4500
001
997990
003
DE-He213
005
20200703140045.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319714288
$9
978-3-319-71428-8
024
7
$a
10.1007/978-3-319-71428-8
$2
doi
035
$a
978-3-319-71428-8
050
4
$a
QA313
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBWR
$2
thema
082
0 4
$a
515.39
$2
23
082
0 4
$a
515.48
$2
23
245
1 0
$a
Geometrical Themes Inspired by the N-body Problem
$h
[electronic resource] /
$c
edited by Luis Hernández-Lamoneda, Haydeé Herrera, Rafael Herrera.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
VII, 128 p. 26 illus., 7 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2204
520
$a
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza’s notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol’d conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism.
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
0
$a
Calculus of variations.
$3
527927
650
0
$a
Differential equations.
$3
527664
650
0
$a
Geometry.
$3
579899
650
0
$a
Manifolds (Mathematics).
$3
1051266
650
0
$a
Complex manifolds.
$3
676705
650
1 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
593942
650
2 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Manifolds and Cell Complexes (incl. Diff.Topology).
$3
668590
700
1
$a
Hernández-Lamoneda, Luis.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1289387
700
1
$a
Herrera, Haydeé.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1289388
700
1
$a
Herrera, Rafael.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1289389
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319714271
776
0 8
$i
Printed edition:
$z
9783319714295
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-71428-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入