Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Miniaturized pulse tube refrigerators.
~
Conrad, Theodore J.
Miniaturized pulse tube refrigerators.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Miniaturized pulse tube refrigerators./
Author:
Conrad, Theodore J.
Description:
174 p.
Notes:
Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: 1190.
Contained By:
Dissertation Abstracts International73-02B.
Subject:
Engineering, Mechanical. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3484077
ISBN:
9781124996813
Miniaturized pulse tube refrigerators.
Conrad, Theodore J.
Miniaturized pulse tube refrigerators.
- 174 p.
Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: 1190.
Thesis (Ph.D.)--Georgia Institute of Technology, 2011.
Pulse tube refrigerators (PTR) are robust, rugged cryocoolers that do not have a moving component at their cold ends. They are often employed for cryogenic cooling of high performance electronics in space applications where reliability is paramount. Miniaturizing these refrigerators has been a subject of intense research interest because of the benefits of minimal size and weight for airborne operation and because miniature coolers would be an enabling technology for other applications. Despite much effort, the extent of possible PTR miniaturization is still uncertain.
ISBN: 9781124996813Subjects--Topical Terms:
845387
Engineering, Mechanical.
Miniaturized pulse tube refrigerators.
LDR
:03086nam 2200289 4500
001
712959
005
20121003100317.5
008
121101s2011 ||||||||||||||||| ||eng d
020
$a
9781124996813
035
$a
(UMI)AAI3484077
035
$a
AAI3484077
040
$a
UMI
$c
UMI
100
1
$a
Conrad, Theodore J.
$3
845488
245
1 0
$a
Miniaturized pulse tube refrigerators.
300
$a
174 p.
500
$a
Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: 1190.
500
$a
Adviser: S. Mostafa Ghiaasiaan.
502
$a
Thesis (Ph.D.)--Georgia Institute of Technology, 2011.
520
$a
Pulse tube refrigerators (PTR) are robust, rugged cryocoolers that do not have a moving component at their cold ends. They are often employed for cryogenic cooling of high performance electronics in space applications where reliability is paramount. Miniaturizing these refrigerators has been a subject of intense research interest because of the benefits of minimal size and weight for airborne operation and because miniature coolers would be an enabling technology for other applications. Despite much effort, the extent of possible PTR miniaturization is still uncertain.
520
$a
To partially remedy this, an investigation of the miniaturization of pulse tube refrigerators has been undertaken using several numerical modeling techniques. In support of these models, experiments were performed to determine directional hydrodynamic parameters characteristic of stacked screens of #635 stainless steel and #325 phosphor bronze wire mesh, two fine-mesh porous materials suitable for use in the regenerator and heat exchanger components of miniature PTRs. Complete system level and pulse tube component level CFD models incorporating these parameters were then employed to quantitatively estimate the effects of several phenomena expected to impact the performance of miniature PTRs. These included the presence of preferential flow paths in an annular region near the regenerator wall and increased viscous and thermal boundary layer thicknesses relative to the pulse tube diameter. The effects of tapering or chamfering the junctions between components of dissimilar diameters were also investigated.
520
$a
The results of these models were subsequently applied to produce successively smaller micro-scale PTR models having total volumes as small as 0.141 cc for which sufficient net cooling was predicted to make operation at cryogenic temperatures feasible. The results of this investigation provide design criteria for miniaturized PTRs and establish the feasibility of their operation at frequencies up to 1000 Hz with dimensions roughly an order of magnitude smaller than those that have recently been demonstrated, provided that challenges related to their regenerator fillers and compressors can be addressed.
590
$a
School code: 0078.
650
4
$a
Engineering, Mechanical.
$3
845387
690
$a
0548
710
2
$a
Georgia Institute of Technology.
$3
845427
773
0
$t
Dissertation Abstracts International
$g
73-02B.
790
1 0
$a
Ghiaasiaan, S. Mostafa,
$e
advisor
790
$a
0078
791
$a
Ph.D.
792
$a
2011
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3484077
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login