Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The Callias index formula revisited
~
SpringerLink (Online service)
The Callias index formula revisited
Record Type:
Language materials, printed : Monograph/item
Title/Author:
The Callias index formula revisited/ by Fritz Gesztesy, Marcus Waurick.
Author:
Gesztesy, Fritz.
other author:
Waurick, Marcus.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
ix, 192 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
Subject:
Index theorems. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-29977-8
ISBN:
9783319299778
The Callias index formula revisited
Gesztesy, Fritz.
The Callias index formula revisited
[electronic resource] /by Fritz Gesztesy, Marcus Waurick. - Cham :Springer International Publishing :2016. - ix, 192 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21570075-8434 ;. - Lecture notes in mathematics ;1943..
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hormander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
ISBN: 9783319299778
Standard No.: 10.1007/978-3-319-29977-8doiSubjects--Topical Terms:
1110683
Index theorems.
LC Class. No.: QA614.92
Dewey Class. No.: 514.74
The Callias index formula revisited
LDR
:01886nam a2200313 a 4500
001
865264
003
DE-He213
005
20161129112434.0
006
m d
007
cr nn 008maaau
008
170720s2016 gw s 0 eng d
020
$a
9783319299778
$q
(electronic bk.)
020
$a
9783319299761
$q
(paper)
024
7
$a
10.1007/978-3-319-29977-8
$2
doi
035
$a
978-3-319-29977-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA614.92
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
514.74
$2
23
090
$a
QA614.92
$b
.G393 2016
100
1
$a
Gesztesy, Fritz.
$3
685064
245
1 4
$a
The Callias index formula revisited
$h
[electronic resource] /
$c
by Fritz Gesztesy, Marcus Waurick.
260
$a
Cham :
$c
2016.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
ix, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2157
520
$a
These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hormander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
650
0
$a
Index theorems.
$3
1110683
650
0
$a
Differential equations, Partial.
$3
527784
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Operator Theory.
$3
672127
650
2 4
$a
Functional Analysis.
$3
672166
700
1
$a
Waurick, Marcus.
$3
1110682
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
1943.
$3
882220
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-29977-8
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login