Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Bifurcation without Parameters
~
SpringerLink (Online service)
Bifurcation without Parameters
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Bifurcation without Parameters/ by Stefan Liebscher.
Author:
Liebscher, Stefan.
Description:
XII, 142 p. 34 illus., 29 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Differential equations. -
Online resource:
https://doi.org/10.1007/978-3-319-10777-6
ISBN:
9783319107776
Bifurcation without Parameters
Liebscher, Stefan.
Bifurcation without Parameters
[electronic resource] /by Stefan Liebscher. - 1st ed. 2015. - XII, 142 p. 34 illus., 29 illus. in color.online resource. - Lecture Notes in Mathematics,21170075-8434 ;. - Lecture Notes in Mathematics,2144.
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar´e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
ISBN: 9783319107776
Standard No.: 10.1007/978-3-319-10777-6doiSubjects--Topical Terms:
527664
Differential equations.
LC Class. No.: QA372
Dewey Class. No.: 515.352
Bifurcation without Parameters
LDR
:02619nam a22004095i 4500
001
968544
003
DE-He213
005
20200629194538.0
007
cr nn 008mamaa
008
201211s2015 gw | s |||| 0|eng d
020
$a
9783319107776
$9
978-3-319-10777-6
024
7
$a
10.1007/978-3-319-10777-6
$2
doi
035
$a
978-3-319-10777-6
050
4
$a
QA372
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.352
$2
23
100
1
$a
Liebscher, Stefan.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1064458
245
1 0
$a
Bifurcation without Parameters
$h
[electronic resource] /
$c
by Stefan Liebscher.
250
$a
1st ed. 2015.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
XII, 142 p. 34 illus., 29 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2117
505
0
$a
Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar´e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
520
$a
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
650
0
$a
Differential equations.
$3
527664
650
0
$a
Partial differential equations.
$3
1102982
650
0
$a
Dynamics.
$3
592238
650
0
$a
Ergodic theory.
$3
672355
650
1 4
$a
Ordinary Differential Equations.
$3
670854
650
2 4
$a
Partial Differential Equations.
$3
671119
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
671353
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319107783
776
0 8
$i
Printed edition:
$z
9783319107769
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-319-10777-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login