Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The Kadison-Singer Property
~
SpringerLink (Online service)
The Kadison-Singer Property
Record Type:
Language materials, printed : Monograph/item
Title/Author:
The Kadison-Singer Property/ by Marco Stevens.
Author:
Stevens, Marco.
Description:
X, 140 p.online resource. :
Contained By:
Springer Nature eBook
Subject:
Mathematical physics. -
Online resource:
https://doi.org/10.1007/978-3-319-47702-2
ISBN:
9783319477022
The Kadison-Singer Property
Stevens, Marco.
The Kadison-Singer Property
[electronic resource] /by Marco Stevens. - 1st ed. 2016. - X, 140 p.online resource. - SpringerBriefs in Mathematical Physics,142197-1757 ;. - SpringerBriefs in Mathematical Physics,8.
Introduction.-Pure state extensions in linear algebra -- Density operators and pure states -- Extensions of pure states -- State spaces and the Kadison-Singer property -- States on C*-algebras -- Pure states and characters -- Extensions of pure states -- Properties of extensions and restrictions -- Maximal abelian C*-subalgebras -- Maximal abelian C*-subalgebras -- Examples of maximal abelian C*-subalgebras -- Minimal projections in maximal abelian von Neumann algebras -- Unitary equivalence -- Minimal projections -- Subalgebras without minimal projections -- Subalgebras with minimal projections -- Classification -- Stone-Čech compactification -- Stone-Čech compactification -- Ultrafilters -- Zero-sets -- Ultra-topology.-Convergence of ultrafilters for Tychonoff spaces -- Pushforward -- Convergence of ultrafilters for compact Hausdorff spaces -- Universal property -- The continuous subalgebra and the Kadison-Singer conjecture -- Total sets of states -- Haar states -- Projections in the continuous subalgebra -- The Anderson operator -- The Kadison-Singer conjecture -- The Kadison-Singer problem -- Real stable polynomials -- Realizations of random matrices -- Orthants and absence of zeroes -- Weaver’s theorem -- Paving theorems -- Proof of the Kadison-Singer conjecture -- Preliminaries -- Linear algebra -- Order theory -- Topology -- Complex analysis -- Functional Analysis and Operator Algebras -- Basic functional analysis -- Hilbert spaces -- C*-algebras -- Von Neumann algebras -- Additional material -- Transitivity theorem -- G-sets, M-sets and L-sets -- GNS-representation -- Miscellaneous -- Notes and remarks -- References.
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material. This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.
ISBN: 9783319477022
Standard No.: 10.1007/978-3-319-47702-2doiSubjects--Topical Terms:
527831
Mathematical physics.
LC Class. No.: QA401-425
Dewey Class. No.: 530.15
The Kadison-Singer Property
LDR
:04101nam a22004095i 4500
001
977247
003
DE-He213
005
20200630102539.0
007
cr nn 008mamaa
008
201211s2016 gw | s |||| 0|eng d
020
$a
9783319477022
$9
978-3-319-47702-2
024
7
$a
10.1007/978-3-319-47702-2
$2
doi
035
$a
978-3-319-47702-2
050
4
$a
QA401-425
050
4
$a
QC19.2-20.85
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
530.15
$2
23
100
1
$a
Stevens, Marco.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1115839
245
1 4
$a
The Kadison-Singer Property
$h
[electronic resource] /
$c
by Marco Stevens.
250
$a
1st ed. 2016.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
X, 140 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Mathematical Physics,
$x
2197-1757 ;
$v
14
505
0
$a
Introduction.-Pure state extensions in linear algebra -- Density operators and pure states -- Extensions of pure states -- State spaces and the Kadison-Singer property -- States on C*-algebras -- Pure states and characters -- Extensions of pure states -- Properties of extensions and restrictions -- Maximal abelian C*-subalgebras -- Maximal abelian C*-subalgebras -- Examples of maximal abelian C*-subalgebras -- Minimal projections in maximal abelian von Neumann algebras -- Unitary equivalence -- Minimal projections -- Subalgebras without minimal projections -- Subalgebras with minimal projections -- Classification -- Stone-Čech compactification -- Stone-Čech compactification -- Ultrafilters -- Zero-sets -- Ultra-topology.-Convergence of ultrafilters for Tychonoff spaces -- Pushforward -- Convergence of ultrafilters for compact Hausdorff spaces -- Universal property -- The continuous subalgebra and the Kadison-Singer conjecture -- Total sets of states -- Haar states -- Projections in the continuous subalgebra -- The Anderson operator -- The Kadison-Singer conjecture -- The Kadison-Singer problem -- Real stable polynomials -- Realizations of random matrices -- Orthants and absence of zeroes -- Weaver’s theorem -- Paving theorems -- Proof of the Kadison-Singer conjecture -- Preliminaries -- Linear algebra -- Order theory -- Topology -- Complex analysis -- Functional Analysis and Operator Algebras -- Basic functional analysis -- Hilbert spaces -- C*-algebras -- Von Neumann algebras -- Additional material -- Transitivity theorem -- G-sets, M-sets and L-sets -- GNS-representation -- Miscellaneous -- Notes and remarks -- References.
520
$a
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material. This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Operator theory.
$3
527910
650
0
$a
Physics.
$3
564049
650
0
$a
Functional analysis.
$3
527706
650
1 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Operator Theory.
$3
672127
650
2 4
$a
Mathematical Methods in Physics.
$3
670749
650
2 4
$a
Functional Analysis.
$3
672166
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319477015
776
0 8
$i
Printed edition:
$z
9783319477039
830
0
$a
SpringerBriefs in Mathematical Physics,
$x
2197-1757 ;
$v
8
$3
1263793
856
4 0
$u
https://doi.org/10.1007/978-3-319-47702-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login