Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Salinity Responses and Tolerance in ...
~
Wani, Shabir Hussain.
Salinity Responses and Tolerance in Plants, Volume 1 = Targeting Sensory, Transport and Signaling Mechanisms /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Salinity Responses and Tolerance in Plants, Volume 1/ edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran.
Reminder of title:
Targeting Sensory, Transport and Signaling Mechanisms /
other author:
Kumar, Vinay.
Description:
XV, 399 p. 33 illus., 25 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Plant physiology. -
Online resource:
https://doi.org/10.1007/978-3-319-75671-4
ISBN:
9783319756714
Salinity Responses and Tolerance in Plants, Volume 1 = Targeting Sensory, Transport and Signaling Mechanisms /
Salinity Responses and Tolerance in Plants, Volume 1
Targeting Sensory, Transport and Signaling Mechanisms /[electronic resource] :edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran. - 1st ed. 2018. - XV, 399 p. 33 illus., 25 illus. in color.online resource.
1. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The story so far BY Sunita Kataria and Sandeep Kumar Verma -- 2. Deploying mechanisms adapted by halophytes to improve salinity tolerance in crop plants: Focus on anatomical features, stomatal attributes and water use efficiency BY Ankanagari Srinivas, Guddimalli Rajasheker, Gandra Jawahar, Punita L. Devineni, Maheshwari Parveda, Somanaboina Anil Kumar and Polavarapu B. Kavi Kishor -- 3. Targeting aquaporins for conferring salinity tolerance in crops BY Kundan Kumar and Ankush Ashok Saddhe -- 4. Strategies to mitigate salt stress effects on photosynthetic apparatus and productivity of crop plants BY Mbarki Sonia, Oksana Sytar, Artemio Cerda, Marek Zivcak, Anshu Rastogi, Xiaolan He, Aziza Zoghlami, Chedly Abdelly, Marian Brestic -- 5. Potassium uptake and homeostasis in plants grown under hostile environmental conditions and its regulation by CBL-interacting protein kinases BY Mohammad Alnayef, Jayakumar Bose, and Sergey Shabala -- 6. Plant hormones: potent targets for engineering salinity tolerance in plants BY Abdallah Atia, Zouhaier Barhoumi, Ahmed Debez, Safa Hkiri, Chedly Abdelly, Abderrazak Smaoui, Chiraz Chaffei Haouari, Houda Gouia -- 7. Transcription factors based genetic engineering for salinity tolerance in crops BY Parinita Agarwal, Pradeep Agarwal, Divya Gohil -- 8. Targeting the redox regulatory mechanisms for salinity stress tolerance in crop BY Mohsin Tanveer and Sergey Shabala -- 9. Manipulating metabolic pathways for development of salt tolerant crops BY Melike Bor and Filiz Özdemir -- 10. The glyoxalase system: a possible target to produce salinity tolerant crop plants BY Tahsina Sharmin Hoque, David J. Burritt, Mohammad Anwar Hossain -- 11. Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity BY Vokkaliga T Harshavardhan, Geetha Govind, Rajesh Kalladan, Nese Sreenivasulu and Chwan-Yang Hong -- 12. Strategies to alleviate salinity stress in plants BY Sara Francisco Costa, Davide Martins, Monika Agacka-Mołdoch, Anna Czubacka and Susana Sousa Araújo -- 13. Polyamines and their metabolic engineering for plant salinity stress tolerance BY Tushar Khare, Amrita Srivastav, Samrin Shaikh and Vinay Kumar -- 14. Single versus multi-gene transfer approaches for crop salt tolerance BY Satpal Turan -- 15. Molecular markers and their role in producing salinity tolerant crop plants BY Sagar Satish Datir.
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single ‘direct action gene’ per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the molecular mechanisms for producing salt-tolerant and high-yielding crops. Through this 2-volume book series, we critically assess the potential venues for imparting salt stress tolerance to major crops in the post-genomic era. Accordingly, perspectives on improving crop salinity tolerance by targeting the sensory, ion-transport and signaling mechanisms are presented here in volume 1. Volume 2 will focus on the potency of post-genomic era tools that include RNAi, genomic intervention, genome editing and systems biology approaches for producing salt tolerant crops.
ISBN: 9783319756714
Standard No.: 10.1007/978-3-319-75671-4doiSubjects--Topical Terms:
889548
Plant physiology.
LC Class. No.: QK710-899
Dewey Class. No.: 571.2
Salinity Responses and Tolerance in Plants, Volume 1 = Targeting Sensory, Transport and Signaling Mechanisms /
LDR
:05226nam a22003975i 4500
001
989994
003
DE-He213
005
20200701052624.0
007
cr nn 008mamaa
008
201225s2018 gw | s |||| 0|eng d
020
$a
9783319756714
$9
978-3-319-75671-4
024
7
$a
10.1007/978-3-319-75671-4
$2
doi
035
$a
978-3-319-75671-4
050
4
$a
QK710-899
072
7
$a
PSTD
$2
bicssc
072
7
$a
SCI011000
$2
bisacsh
072
7
$a
PST
$2
thema
082
0 4
$a
571.2
$2
23
245
1 0
$a
Salinity Responses and Tolerance in Plants, Volume 1
$h
[electronic resource] :
$b
Targeting Sensory, Transport and Signaling Mechanisms /
$c
edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran.
250
$a
1st ed. 2018.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
XV, 399 p. 33 illus., 25 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The story so far BY Sunita Kataria and Sandeep Kumar Verma -- 2. Deploying mechanisms adapted by halophytes to improve salinity tolerance in crop plants: Focus on anatomical features, stomatal attributes and water use efficiency BY Ankanagari Srinivas, Guddimalli Rajasheker, Gandra Jawahar, Punita L. Devineni, Maheshwari Parveda, Somanaboina Anil Kumar and Polavarapu B. Kavi Kishor -- 3. Targeting aquaporins for conferring salinity tolerance in crops BY Kundan Kumar and Ankush Ashok Saddhe -- 4. Strategies to mitigate salt stress effects on photosynthetic apparatus and productivity of crop plants BY Mbarki Sonia, Oksana Sytar, Artemio Cerda, Marek Zivcak, Anshu Rastogi, Xiaolan He, Aziza Zoghlami, Chedly Abdelly, Marian Brestic -- 5. Potassium uptake and homeostasis in plants grown under hostile environmental conditions and its regulation by CBL-interacting protein kinases BY Mohammad Alnayef, Jayakumar Bose, and Sergey Shabala -- 6. Plant hormones: potent targets for engineering salinity tolerance in plants BY Abdallah Atia, Zouhaier Barhoumi, Ahmed Debez, Safa Hkiri, Chedly Abdelly, Abderrazak Smaoui, Chiraz Chaffei Haouari, Houda Gouia -- 7. Transcription factors based genetic engineering for salinity tolerance in crops BY Parinita Agarwal, Pradeep Agarwal, Divya Gohil -- 8. Targeting the redox regulatory mechanisms for salinity stress tolerance in crop BY Mohsin Tanveer and Sergey Shabala -- 9. Manipulating metabolic pathways for development of salt tolerant crops BY Melike Bor and Filiz Özdemir -- 10. The glyoxalase system: a possible target to produce salinity tolerant crop plants BY Tahsina Sharmin Hoque, David J. Burritt, Mohammad Anwar Hossain -- 11. Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity BY Vokkaliga T Harshavardhan, Geetha Govind, Rajesh Kalladan, Nese Sreenivasulu and Chwan-Yang Hong -- 12. Strategies to alleviate salinity stress in plants BY Sara Francisco Costa, Davide Martins, Monika Agacka-Mołdoch, Anna Czubacka and Susana Sousa Araújo -- 13. Polyamines and their metabolic engineering for plant salinity stress tolerance BY Tushar Khare, Amrita Srivastav, Samrin Shaikh and Vinay Kumar -- 14. Single versus multi-gene transfer approaches for crop salt tolerance BY Satpal Turan -- 15. Molecular markers and their role in producing salinity tolerant crop plants BY Sagar Satish Datir.
520
$a
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single ‘direct action gene’ per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the molecular mechanisms for producing salt-tolerant and high-yielding crops. Through this 2-volume book series, we critically assess the potential venues for imparting salt stress tolerance to major crops in the post-genomic era. Accordingly, perspectives on improving crop salinity tolerance by targeting the sensory, ion-transport and signaling mechanisms are presented here in volume 1. Volume 2 will focus on the potency of post-genomic era tools that include RNAi, genomic intervention, genome editing and systems biology approaches for producing salt tolerant crops.
650
0
$a
Plant physiology.
$3
889548
650
0
$a
Plant breeding.
$3
568050
650
0
$a
Agriculture.
$3
660421
650
0
$a
Oxidative stress.
$3
582757
650
1 4
$a
Plant Physiology.
$3
579850
650
2 4
$a
Plant Breeding/Biotechnology.
$3
677715
650
2 4
$a
Oxidative Stress.
$3
582763
700
1
$a
Kumar, Vinay.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1201645
700
1
$a
Wani, Shabir Hussain.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1205749
700
1
$a
Suprasanna, Penna.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1229018
700
1
$a
Tran, Lam-Son Phan.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1172633
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783319756707
776
0 8
$i
Printed edition:
$z
9783319756721
776
0 8
$i
Printed edition:
$z
9783030092948
856
4 0
$u
https://doi.org/10.1007/978-3-319-75671-4
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login